For part A, The answer is that the car gets better gas mileage. We can see it from the graph that the number of gallons used is on the X axis, and the distance traveled using those number of gallons is on the Y axis. The easiest way to compare would be to look at the 1 gallon of gas. You can see that you can travel 25 miles on 1 gallon of gas. The truck on the other hand will get you 18 miles per gallon. Imagine putting 1 in for X, the Y value would be 18 if you did this. The graph just shows us a visual way of saying the same thing. To determine how much farther the car with a girl on 8 gallons of gas, you would just multiply 8 by 25 for the number of miles traveled by the car. You would multiply 8 by 18 to find the number of miles traveled for the truck. The answers are 200 miles for the car and 144 miles for the truck. 200-144=56 miles farther for the car.
a)
has CDF


where the last equality follows from independence of
. In terms of the distribution and density functions of
, this is

Then the density is obtained by differentiating with respect to
,

b)
can be computed in the same way; it has CDF


Differentiating gives the associated PDF,

Assuming
and
, we have


and


I wouldn't worry about evaluating this integral any further unless you know about the Bessel functions.
Answer:
2x-y=0
x=1/2y
Step-by-step explanation:
- 6 - (-2)
- (-2) = 2
* two negatives = one positive
-6 + 2 = -4
-4 is your answer
hope this helps
I believe the Surface Area is 37 inches^2 and the Volume is 15 inches^2