Answer:
<h2>All living things share similar cellular structures </h2><h3>hope it helps you<3</h3>
Answer:
A limiting factor is anything that constrains a population's size and slows or stops it from growing. Some examples of limiting factors are biotic, like food, mates, and competition with other organisms for resources. Others are abiotic, like space, temperature, altitude, and amount of sunlight available in an environment. Limiting factors are usually expressed as a lack of a particular resource. For example, if there are not enough prey animals in a forest to feed a large population of predators, then food becomes a limiting factor. Likewise, if there is not enough space in a pond for a large number of fish, then space becomes a limiting factor. There can be many different limiting factors at work in a single habitat, and the same limiting factors can affect the populations of both plant and animal species. Ultimately, limiting factors determine a habitat's carrying capacity, which is the maximum size of the population it can support.
Explanation:
https://www.nationalgeographic.org/topics/limiting-factors/?q=&page=1&per_page=25
I'm working on the assignment rn. But here are some clues to help you.
Answer:
The correct answer is A. a rotating cloud of dust and gas.
Explanation:
Nebulae are regions of the interstellar medium (clouds) made up of gases (mainly hydrogen and helium) and dust. In other words, nebulae are concentrations of gas in which we find hydrogen, helium and stardust in greater quantities. They are structures that are actually very important for the universe, this because inside it is the place where stars are born, which arise due to the condensation and aggregation of matter. The nebular theory states that the Solar System reached the form current from a solar nebula (a gas cloud), more than 4.5 billion years ago. The large cloud of molecular gas was affected by a certain phenomenon that would have taken place in the vicinity. Like the explosion of a supernova or the passage of a star that would produce a strong gravitational impact. The result of this event made the matter agglomerate in different places. The high concentration of matter caused the nebula to collapse. Becoming a protostar, (bodies whose characteristic is to be surrounded by clouds and contain preplanetary matter inside), that is, gaseous matter in the outermost part and solid inward. At the core of this structure, the temperature is so dominant that nuclear reactions take place to compensate for the gravitational force. This leads to a hydrostatic equilibrium and the formation of a fundamental star: the Sun. The rest of the mass flattened, forming a protoplanetary disk where the protoplanets were being formed, which would evolve to become the current planets, their satellites and the others bodies of the solar system.
Mitochondria is the answer to your questions