In order to calculate the temperature, we need to know that temperature and pressure are directly proportional, that is, if the pressure increases, the temperature (in Kelvin) also increases in the same proportion.
So, first let's convert the temperature from Celsius to Kelvin, by adding 273 units:

Then, let's calculate the proportion:

Now, converting back to Celsius, we have:

So the temperature would be 166.5 °C.
Explanation:
PRIMERO HACES EL RECUENTO DEL TIEMPO Y LO CONVIERTES EN
SEGUNDOS Y ENTONCES
<em>t</em> = 227 s
= 227 S - 38 s = 189 s
= 38 s
LUEGO USANDO LA ECUACIÓN DE GALILEO GALILEI SSUPONIENDO
QUE EL MOVIL VIAJA A VELOCIDAD CONSTANTE
<em>v</em> = 3.50 m/189 s = 0.0185 m/s
PARA LA DISTANCIA NTRE B Y C
= 0.0185 m/S( 38 s) = 0.703 m
LA HORA EN QUE EL MOVIL PASA POR A ES
11:43:15 - 38 s - 189 s = 11:39:29
Answer:
(D) It is equal to the original velocity of the skater.
Explanation:
The velocity of the center of mass of a system is

The velocity of the center of mass is constant if there is no external force, because the total momentum of the whole system is conserved.
So, before the snowball is thrown, the velocity of the center of mass is equal to that of the skater. This velocity will always be equal to the velocity of the center of mass of the system.
Answer:
- 91499.95 V
Explanation:
Let the mid point is P.
qA = 3.4 pC = 3.4 x 10^-12 C
qB = - 6.10 micro Coulomb = - 6.10 x 10^-6 C
AB = 1.20 m
AP = BP = 0.6 m
Let the potential at P due to the charge at A is VA and the potential at P due to the charge at B is VB.
The potential at P is V
V = VA + VB


V = 0.051 - 91500
V = - 91499.95 V