you would multiply 30 by 15. because its the weight times the distance.
Answer:
Titan takes 11.634 times longer to orbit Saturn as compared to Enceladus.
Explanation:
We have been given that the average distance of Enceladus from Saturn is 238,000 km; the average distance of Titan from Saturn is 1,222,000 km.
We will use Kepler's Law to solve our given problem.
Upon substituting our given values, we will get:
Taking square root of both sides, we will get:
This implies that time period of Titan about Sturn is 11.634 times more compared to time period of Enceladus about Saturn.
So, basically Titan takes 11.634 times longer to orbit Saturn as compared to Enceladus.
Let:
Vx = the pulling component of force
Vy = the lifting component of force
Vy:
Sin(n°) = Vy/hypotenuse
hypotenuse * Sin(n°) = Vy
100N*sin(30°) = Vy
50N = Vy
Vx:
Cos(n°) = Vx/hypotenuse
Hypotenuse * cos(n°) = Vx
100N*cos(30°) =Vx
about 86.6N = Vx
Answer:
The reason why first impressions are so important is that they last well beyond that moment. This is thanks to something called the primacy effect, which means that when someone experiences something before other things in a sequence, they remember that first thing more.