The ideal mechanical advantage (IMA) can be determined by the following equation:
IMA= Input distance/Output distance
The Input distance and Output distance are:
Input distance=220 meters
Output distance=110 meters
When you substitute in the equation of the ideal mechanical advantage (IMA), you obtain:
IMA= Input distance/Output distance
IMA= 220 meters/110 meters
IMA=2
Answer:
B. inverse plot, 0.51 kilograms/meter3
Explanation:
First of all, we note that the relationship between the altitude and the atmospheric density is an inverse relationship. In fact, an inverse relationship is a relationship between the x-variable and the y-variable of the form
Therefore, as the x increases, the y decreases, and as the x decreases, they increases. This is exactly what occurs with the altitude and the atmospheric density in this plot: as the altitude increases, the density decreases, and vice-versa.
Moreover, we can infer the value of the atmospheric density at an altitude of 1,291 km. This point is located between point A (2550 km) and point B(1000 km), so the density must have a value between 0.30 kg/m^3 and 0.54 kg/m^3, so the correct choice is
B. inverse plot, 0.51 kilograms/meter3
Answer:
The heat transferred into the system is 183.5 J.
Explanation:
The first law of thermodynamics relates the heat transfer into or out of a system to the change of internal and the work done on the system, through the following equations.
ΔU = Q - W
where;
ΔU is the change in internal energy
Q is the heat transfer into the system
W is the work done by the system
Given;
ΔU = 155 J
W = 28.5 J
Q = ?
155 = Q - 28.5
Q = 155 + 28.5
Q = 183.5 J
Therefore, the heat transferred into the system is 183.5 J.
A.
They’re supposed to help the person and cannot diagnose them as that is the job of a doctor
Suppose you are doing an experiment where you determine the value of one parameter, say density of a liquid. You have two methods in doing this. By finding the mass and volume, and by using a densitometer. Reproducibility is when you get the same value of density for both methods. Replicability is when you have similar results in one method. So, replicability is a measure of precision, while reproducibility is a measure of accuracy.