Answer:
> The amount of heat required to melt ice and raise the temperature of water T o C T^oC ToC is Q = m L f + m c Δ T Q=mL_f+mc\Delta T Q=mLf+mcΔT Here m = 1.5 k g m=1.5 kg m=1.5kg L f = 3.33 ∗ 1 0 5 J
E=274J
h=140cm=1,4m
g≈9,8m/s²
m=?
E=mgh
m=E/gh=274J/9,8m/s²*1,4m≈20kg
"Non nobis Domine, non nobis, sed Nomini tuo da gloriam."
Regards M.Y.
<h2>Explanation:</h2><h3>3. </h3>
When light bounces back, it is <em>reflected</em>. (That's why you see your <em>reflection</em> in a mirror.) When light is bent from the path it is taking, it is <em>refracted</em>. The only answer choice that makes correct use of these terms is the third choice:
- Part of the ray is <em>refracted</em> into ray B; part of the ray is <em>reflected</em> as ray R.
_____
<h3>4.</h3>
The index of refraction is the ratio of the sine of the angle of incidence to the sine of the angle of refraction. Both angles are measured from the normal to the surface. The angle of refraction here is 12.5° less than the angle of incidence, 44°, so is 31.5°. Then the index of refraction of the medium is ...
n = sin(44°)/sin(31.5°) = 0.69466/0.52250 = 1.3299 ≈ 1.33
- none of the offered choices is correct. The closest is 1.34.
Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon and the Sun, and the rotation of the Earth. Tide tables can be used to find the predicted times and amplitude (or "tidal range") of tides at any given locale.
For further expiation please contact me at 678-987-2411. Disclaimer(This is not a real number)
Answer:
Mass, M = 1000 kg
Speed, v = 90 km/h = 25 m/s
time, t = 6 sec.
Distance:

Force:
