Answer: The new pressure of the gas, assuming that no gas escaped during the experiment is 0.470 atm
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 0.732 atm
= final pressure of gas = ?
= initial volume of gas = 6.87 L
= final volume of gas = 9.22 L
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Thus the new pressure of the gas, assuming that no gas escaped during the experiment is 0.470 atm
Compressed is the answer!
I hope this helps. :)
Answer:
Its pressure will be 0.54 atm at 100 K.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as the quotient between pressure and temperature equal to a constant:

Studying two different states, an initial state 1 and a final state 2, it is satisfied:

In this case:
- P1= 1.75 atm
- T1= 50 °C= 323 K (being 0 C=273 K)
- P2= ?
- T2= 100 K
Replacing:

Solving:

P2= 0.54 atm
<u><em>Its pressure will be 0.54 atm at 100 K.</em></u>
Answer: The balanced equation for the complete oxidation reaction that occurs when methane (CH4) burns in air is
.
Explanation:
When a substance tends to gain oxygen atom in a chemical reaction and loses hydrogen atom then it is called oxidation reaction.
For example, chemical equation for oxidation of methane is as follows.

Number of atoms present on reactant side are as follows.
Number of atoms present on product side are as follows.
To balance this equation, multiply
by 2 on reactant side. Also, multiply
by 2 on product side. Hence, the equation can be rewritten as follows.

Now, the number of atoms present on reactant side are as follows.
Number of atoms present on product side are as follows.
Since, the atoms present on both reactant and product side are equal. Therefore, this equation is now balanced.
Thus, we can conclude that balanced equation for the complete oxidation reaction that occurs when methane (CH4) burns in air is
.