The atom contain 6 neutrons, if that's the question
To get the concentration of the second solution let us use the following formulae
C1V1=C2V2 where C1 is concentration of first solution and V1 is the volume of solution first solution. on the other hand C2 is the concentration of second solution and V2 is the volume of second solution.
therefore
0.8×2=(2+10)×C2
1.6 =12×C2
1.6/12=C2
C2 = 0.1333mg/mL
i believe
2 g/mL
good luck!
For this problem, we use the formula for sensible heat which is written below:
Q= mCpΔT
where Q is the energy
Cp is the specific heat capacity
ΔT is the temperature difference
Q = (55.5 g)(<span>0.214 cal/g</span>·°C)(48.6°C- 23°C)
<em>Q = 304.05 cal</em>
Answer:
B. They are dimensionless ratios of the actual concentration or pressure divided by standard state concentration, which is 1 M for solutions and 1 bar for gases.
Explanation:
Activity of a substance is defined as the ratio of an effective concentration or an effective pressure to a standard state pressure or a standard state pressure. It is usually a unit less ratio.
Concentrations in an equilibrium constant are really dimensionless ratios of actual concentrations divided by standard state concentrations. Since standard states are 1 M for solutes, 1 bar for gases, and pure substances for solids and liquids, these are the units to be used.
Hence, activity is a fudge factor to ideal solutions that correct the true concentration. Activity of a gas and solute concentration is a ratio with no unit.