So the solution inside doesn't splash
Find your answer in the explanation below.
Explanation:
PV = nRT is called the ideal gas equation and its a combination of 3 laws; Charles' law, Boyle's law and Avogadro's law.
According to Boyle's law, at constant temperature, the volume of a gas is inversely proportional to the pressure. i.e V = 1/P
From, Charles' law, we have that volume is directly proportional to the absolute temperature of the gas at constant pressure. i.e V = T
Avogadro's law finally states that equal volume of all gases at the same temperature and pressure contain the same number of molecules. i.e V = n
Combining the 3 Laws together i.e equating volume in all 3 laws, we have
V = nT/P,
V = constant nT/P
(constant = general gas constant = R)
V = RnT/P
by bringing P to the LHS, we have,
PV = nRT.
Q.E.D
Answer:
63.05% of MgCO3.3H2O by mass
Explanation:
<em>of MgCO3.3H2O in the mixture?</em>
The difference in masses after heating the mixture = Mass of water. With the mass of water we can find its moles and the moles and mass of MgCO3.3H2O to find the mass percent as follows:
<em>Mass water:</em>
3.883g - 2.927g = 0.956g water
<em>Moles water -18.01g/mol-</em>
0.956g water * (1mol/18.01g) = 0.05308 moles H2O.
<em>Moles MgCO3.3H2O:</em>
0.05308 moles H2O * (1mol MgCO3.3H2O / 3mol H2O) =
0.01769 moles MgCO3.3H2O
<em>Mass MgCO3.3H2O -Molar mass: 138.3597g/mol-</em>
0.01769 moles MgCO3.3H2O * (138.3597g/mol) = 2.448g MgCO3.3H2O
<em>Mass percent:</em>
2.448g MgCO3.3H2O / 3.883g Mixture * 100 =
<h3>63.05% of MgCO3.3H2O by mass</h3>
Answer:
Explanation:
A single replacement or single displacement reaction is a reaction in which one substance replaces another.
A + BC → AC + B
The replacement of an ion in solution by a metal higher in the activity series is a special example of this reaction type.
The relative positions of the elements in the activity series provides the driving force for single displacement reactions.
A double replacement reaction is one in which there is an actual exchange of partners between reacting species. This reaction is more common between ionic substances;
AB + CD → AC + BD
Such reactions are usually driven by;
- formation of precipitation
- formation of water and a gaseous product
<u>Answer:</u> The mass of iron in the ore is 10.9 g
<u>Explanation:</u>
We are given:
Mass of iron (III) oxide = 15.6 g
We know that:
Molar mass of Iron (III) oxide = 159.69 g/mol
Molar mass of iron atom = 55.85 g/mol
As, all the iron in the ore is converted to iron (III) oxide. So, the mass of iron in iron (III) oxide will be equal to the mass of iron present in the ore.
To calculate the mass of iron in given mass of iron (III) oxide, we apply unitary method:
In 159.69 g of iron (III) oxide, mass of iron present is
So, in 15.6 g of iron (III) oxide, mass of iron present will be =
Hence, the mass of iron in the ore is 10.9 g