The solubility of potassium chloride in at room temperature is approximately 34 g per 100 g of water. Therefore, the maximum amount that could be dissolved would be 34/100 ( 200) = 68 g of KCl. When more than this amount is added, excess potassium would not dissolve forming crystals in the solution.
48.3 g AgNO3 / 169.9 g/mol = 0.284 moles AgNO3
0.284 mol AgNO3 X (1 mol Ag2CrO4/2 mol AgNO3) = 0.142 mol Ag2CrO4
0.142 mol Ag2CrO4 X 331.7 g/mol = 47.1 g Ag2CrO4
A) The limiting reactant is Al
b) Br2 is the excess reactant
c) The amount moles of AlBr3 that get produced will be equal to the number of moles of Al to begin with.
d) 0
Answer:
Take a look at the attachment below
Explanation:
Take a look at the periodic table. As you can see, Rubidium is the closest element to Cesium, and happens to have the closest boiling point to Cesium, with only a difference of about 30 degrees.
Respectively, you would think that fluorine should have the least similarity to Cesium with respect to it's boiling point, considering it is the farthest away from the element out of the 4 given. This is not an actual rule, there are no fixed trends of boiling points in the periodic table, there are some but overall the trends vary. However in this case fluorine does have the least similarity to Cesium with respect to it's boiling point, a difference of about 1,546.6 degrees.
<em>Hope that helps!</em>