A is obviously out because it leads to a volume of 125.0 milliliters of the new solution and gives you a lower concentration than you were aiming for.
D is out because you are adding 75 milliliters of the stock solution, so your concentration would be too high. You only need 25.0 milometers of stock solution per 100 milliliters of the new solution.
C is also out because it leads to 50.0 milliliters stock solution per 100 milliliters of the new solution and hence the wrong concentration.
B is by default the correct answer. It also details the correct technique. First you add the stock solution (This you know from your calculations to be 25 milliliters.) then you add the water up to the volume you needed. (Because the calculations only tell you the total volume of water not what you need to add) You also add the water last so you can rinse the neck of the flask to make sure you also get all the stock solution residue into the stock solution.
I would add the final step of stirring, but B is the only answer that can be correct.
Answer:
The answer is E. All of the statements describe the anomeric carbon.
Explanation:
When a sugar switches from its open form to its ring form, the carbon from the carbonyl (aldehyde if it is an aldose, or a ketone in the case of a ketose) suffers a nucleophilic addition by one of the hydroxyls in the chain, preferably one that will form a 5 or 6 membered ring after the reaction.
As such, the anomeric carbon will have two oxygens attached (The original one and the one that bonded when the ring closed).
It will be chiral, given that it has 4 different groups attached. (-OR,-OH,-H and -R, where R is the carbon chain).
The hydroxyl group can be in any position (Above of below the ring), depending on with side the addition took place. (See attachment)
It is the carbon of the carbonyl in the open-chain form of the sugar, because it is the only one that can react with the Hydroxyls.
Answer:
<em>Option A. It was delivered by comets that crashed into Earth's surface.</em>
Explanation:
<em><u>Uranium (U) is a chemical element with atomic number 92.</u></em>
<em />
<em>For many years, a large number of scientists have been studying the abundance and origin of the isotopes of uranium in Earth</em>. <u>According to some theories, the Earth's uranium was produced in one or more supernovae</u> (an explosive brightening of a star), in wich, the main process consists in the rapid capture of neutrons by seed nuclei at great rates. <u>Another theory proposes that uranium is created during the merger of two neutron stars</u> (neutron stars are very dense), because, when such dense bodies come closer together the gravitational force cause them to merge, producing huge amounts of hevy metals like uranium.
<u><em>Many analyses have been made of the uranium in rocks of the Earth. These measurements shows that the abundance of uranium is bigger in the crust and upper mantle of the Earth</em></u>.
So, knowing that Earth's uranium was produced through one of these processes, <u><em>the best answer is option A, the uranium was delivered by comets that crashed into Earth's surface.</em></u>
Have a nice day!