Answer : The pressure of gas will be, 3.918 atm and the combined gas law is used for this problem.
Solution :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 3 atm
= final pressure of gas = ?
= initial volume of gas = 1.40 L
= final volume of gas = 0.950 L
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get the final pressure of gas.


Therefore, the pressure of gas will be, 3.918 atm and the combined gas law is used for this problem.
Answer:
pH ≅ 4.80
Explanation:
Given that:
the volume of HN₃ = 25 mL = 0.025 L
Molarity of HN₃ = 0.150 M
number of moles of HN₃ = 0.025 × 0.150
number of moles of HN₃ = 0.00375 mol
Molarity of NaOH = 0.150 M
the volume of NaOH = 13.3 mL = 0.0133
number of moles of NaOH = 0.0133× 0.150
number of moles of NaOH = 0.001995 mol
The chemical equation for the reaction of this process can be written as:

1 mole of hydrazoic acid react with 1 mole of hydroxide to give nitride ion and water
thus the new number of moles of HN₃ = 0.00375 - 0.001995 = 0.001755 mol
Total volume used in the reaction = 0.025 + 0.0133 = 0.0383 L
Concentration of
=
= 0.0458 M
Concentration of
=
= 0.0521 M
GIven that :
Ka = 
Thus; it's pKa = 4.72




pH ≅ 4.80
Answer:
How the relative density of a substance is related to the density calculate the density of iron if its relative density is 2 and a density of water is 2gcm -3
R.d= relative density of substance/ relative density of water
R.d= 2/2
R.d= 1gcm-3
Explanation:
The awnser is D beacuse the lower in group one you get the more reactive with water
Answer:
The volume of reactant measured at STP left over is 409.9 L
Explanation: