Answer:
and 
Explanation:
Our goal for this question is the calculation of the number of moles of the molecules produced by the reaction of hydrazine (
) and <u>oxygen</u> (
). So, we can start with the <u>reaction</u> between these compounds:
Now we can <u>balance the reaction</u>:
In the problem, we have the values for both reagents. Therefore we have to <u>calculate the limiting reagent</u>. Our first step, is to calculate the moles of each compound using the <u>molar masses values</u> (32.04 g/mol for
and 31.99 g/mol for
):


In the balanced reaction we have 1 mol for each reagent (the numbers in front of
and
are 1). Therefore the <u>smallest value would be the limiting reagent</u>, in this case, the limiting reagent is
.
With this in mind, we can calculate the number of moles for each product. In the case of
we have a <u>1:1 molar ratio</u> (1 mol of
is produced by 1 mol of
), so:

We can follow the same logic for the other compound. In the case of
we have a <u>1:2 molar ratio</u> (2 mol of
is produced by 1 mol of
), so:

I hope it helps!
Answer:
ΔH°_rxn = -195.9 kJ·mol⁻¹
Explanation:
4NH₃(g) + 3O₂(g) ⟶ 2N₂(g) +6H₂O(g)
ΔH°_f/(kJ·mol⁻¹): -45.9 0 0 -241.8
The formula relating ΔH°_rxn and enthalpies of formation (ΔH°_f) is
ΔH°_rxn = ΣΔH°_f(products) – ΣΔH°_f(reactants)
ΣΔH°_f(products) = -6(241.8) = -1450.8 kJ
ΣΔH°_f(reactants) = -4(45.9) = -183.6 kJ
ΔH°_rxn = (-1450.8 + 183.6) kJ = -1267.2 kJ
Fungi is an example of a decomposer.
Physical changes can be reversed and chemical changes can’t be reversed. A physical property is a characteristic which can be identified without changing the substance but to identify a chemical property, you do have to change the substance.
Answer:
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (the electromagnetic, weak, and strong interactions, and not including the gravitational force) in the universe, as well as classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists around the world, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks.