Balance each one by adding electrons to make the charges on both sides the same:
Sn--> Sn2+ + 2 e-
Ag+ + 1 e- --> Ag
Now, you have to have the same number of electrons in the two half-reactions, so multiply the second one by 2 to get:
2 Ag+ + 2 e- --> 2 Ag
Now, just add the two half reactions together, cancelling anything that's the same on both sides:
2 Ag+ + Sn --> Sn2+ + 2 Ag
And you're done.
This question is asking for an element with 5 valence electrons. Just go to the row it is in (excluding transition metals) and count over.
The answer would be c. P
It changes state
Meaning, it goes from solid to liquid, making it change its state. Hope this helped.
(missing in Q) : Calculate the concentration of CO & H2 & H2O when the system returns the equilibrium???
when the reaction equation is:
C(s) + H2O(g) ↔ H2(g) + CO(g)
∴ Kc = [H2] [CO] / [H2O]
and we have Kc = 0.0393 (given missing in the question)
when the O2 is added so, the reaction will be:
2H2(g) + O2(g) → 2H2O(g)
that means that 0.15 mol H2 gives 0.15 mol of H2O
∴ by using ICE table:
[H2O] [H2] [CO]
initial 0.57 + 0.15 0 0.15
change -X +X +X
Equ (0.72-X) X (0.15+X)
by substitution:
0.0393 = X (0.15+X) / (0.72-X) by solving for X
∴ X = 0.098
∴[H2] = X = 0.098 M
∴[CO] = 0.15 + X
= 0.15 + 0.098 = 0.248 M
∴[H2O] = 0.72 - X
= 0.72 - 0.098
= 0.622 M