The Roman numerals in a cation's name indicate: THE POSITIVE CHARGE ON THE CATION
Cations are metallic atoms that loosely hold it electrons, making it easy to lose electrons.
The Roman numerals in a cation's name not only indicates the charge on the cation but it makes it easier to distinguish cations that share the same metal name.
Answer:
[H_3 O^+] = 1.0 ×10^-13
Explanation:
If we multiply the left side we get, 1e - 13. We add 13 to the right side while subtracting the remaining value from the left side (H3O+) than combine like terms. As you will get pH = 13.00
Answer:
He developed the concept of concentric electron energy levels
Explanation:
Before Bohr's model, Rutherford's model was proposed. This model explains most of the properties of the atom but failed to explain the stability of the atom.
As per Rutherford's model, electrons revolve around the nucleus in the orbit.
But revolving electron in their orbit around nucleus would give up energy and so gradually move towards the nucleus and therefore, eventually collapse.
Bohr's proposed that the electrons around the nucleus move orbit of fixed energy called "stationary states". Electrons in these stationary states do not radiate energy.
Therefore, proposal of concentric electron energy levels refine the atomic models.
Answer:
Faraday's constant will be smaller than it is supposed to be.
Explanation:
If the copper anode was not completely dry when its mass was measured, mass of the copper must be heavier than it should have been. Hence, the calculated Faraday’s constant would be smaller than it is supposed to be since when calculating Faraday’s Constant, the charge transferred is divided by the moles of electrons.