Answer:
If it is moving 34 m/s it will take 100 seconds, or 1:40 to reach 3400 meters.
Explanation:
I found this answer by dividing 3400 by 34 and converting seconds to minutes
The distance covered by an object accelerating from rest is
D = (1/2) · (acceleration) · (time)² .
In this particular case, 'acceleration' is 9.8 m/s² ... due to gravity.
D = (1/2) · (9.8 m/s²) · (1.67 s)²
D = (4.9 m/s²) · (2.789 s²)
D = 13.67 meters
A diverging lens is used to permit clear vision of an object placed at infinity. The focal length of the lens is -100 cm.
<h3>What is focal length?</h3>
The focal length is half of the radius of curvature of the focal lens.
By the lens maker formula,
1/f = 1/v +1/u
where, v is the image distance and u is the object distance.
Give, the object is at infinity and the image must form at 100 cm, the the focal length will be
1/f = 1/ -100 + 1/∞
f = -100 cm
The focal length must be -100 cm for the diverging lens.
Learn more about focal length.
brainly.com/question/16188698
#SPJ1
Answer:
what are simple machines lol
Explanation:
Answer:
The angular magnification is 
Explanation:
From the question we are told
The focal length is 
The near point is 
The angular magnification is mathematically represented as

Substituting values
