Answer:
It is found that W1 - W2 loss in weight of solid when immersed in water is equal to the weight of the water displaced by the body. This verifies Archimedes' principle.
Answer:
Technician B
Explanation:
here on analyzing both the statements from technician A and technician B. The Statement from Technician B is more logical and correct. That the power-assisted brake system reduces the force that the driver must exert on the brake pedal.
The power-assisted brake system does not reduce the distance of stopping. What it does is it reduces the force to be applied by the driver. Thus, making the drive more comfortable.
Answer:
It remains constant
Explanation:
As we know that buoyant force on an object given as
Fb = ρ Vd g
ρ= Density of fluid
Vd=Volume displace by body
g=10 m/s²
Fb =buoyant force
So from above we can say that buoyant force does not depends on the depth. It only depends on the fluid density and volume displace by body.
So when rock gets deeper and deeper the buoyant force will remain constant.
It remains constant
Answer:
kinetic energy will change by a factor of 1/2
Option C) 1/2 is the correct answer
Explanation:
Given the data in the question;
we know that;
Kinetic energy = 1/2.mv²
given that mass of the object is doubled; m1 = 2m
speed is halved; v1 = V/2
Now, New kinetic energy will be; 1/2.m1v1²
we substitute
Kinetic Energy = 1/2 × 2m × (v/2)²
Kinetic Energy = 1/2 × 2m × (v²/4)
Kinetic Energy = 1/2 × m × (v²/2)
Kinetic Energy = 1/2 [ 1/2mv² ]
Kinetic Energy = 1/2 [ KE ]
Therefore; kinetic energy will change by a factor of 1/2
Option C) 1/2 is the correct answer
Answer:
The torque about his shoulder is 34.3Nm.
The solution approach assumes that the weight of the boy's arm acts at the center of the boy's arm length 35cm from the shoulder.
Explanation:
The solution to the problem can be found in the attachment below.