The block has maximum kinetic energy at the bottom of the curved incline. Since its radius is 3.0 m, this is also the block's starting height. Find the block's potential energy <em>PE</em> :
<em>PE</em> = <em>m g h</em>
<em>PE</em> = (2.0 kg) (9.8 m/s²) (3.0 m)
<em>PE</em> = 58.8 J
Energy is conserved throughout the block's descent, so that <em>PE</em> at the top of the curve is equal to kinetic energy <em>KE</em> at the bottom. Solve for the velocity <em>v</em> :
<em>PE</em> = <em>KE</em>
58.8 J = 1/2 <em>m v</em> ²
117.6 J = (2.0 kg) <em>v</em> ²
<em>v</em> = √((117.6 J) / (2.0 kg))
<em>v</em> ≈ 7.668 m/s ≈ 7.7 m/s
I'm pretty sure that there should be an options to choose. Anyway, I've seen this question before and I know that this is an example of <span>the phi phenomenon.</span>
Answer:
is that high school work??? cause I don't know it and I'm about to go to high school
Answer:
Explanation:
Given
mass 
Force 
door knob is located at a distance of r=0.8 m from axis
Angular acceleration of door 
Torque 
where I=moment of inertia

