Explanation:
According to Clausius-Claperyon equation,
![ln (\frac{P_{2}}{P_{1}}) = \frac{-\text{heat of vaporization}}{R} \times [\frac{1}{T_{2}} - \frac{1}{T_{1}}]](https://tex.z-dn.net/?f=ln%20%28%5Cfrac%7BP_%7B2%7D%7D%7BP_%7B1%7D%7D%29%20%3D%20%5Cfrac%7B-%5Ctext%7Bheat%20of%20vaporization%7D%7D%7BR%7D%20%5Ctimes%20%5B%5Cfrac%7B1%7D%7BT_%7B2%7D%7D%20-%20%5Cfrac%7B1%7D%7BT_%7B1%7D%7D%5D)
The given data is as follows.
= (63.5 + 273) K
= 336.6 K
= (78 + 273) K
= 351 K
= 1 atm,
= ?
Putting the given values into the above equation as follows.
![ln (\frac{P_{2}}{P_{1}}) = \frac{-\text{heat of vaporization}}{R} \times [\frac{1}{T_{2}} - \frac{1}{T_{1}}]](https://tex.z-dn.net/?f=ln%20%28%5Cfrac%7BP_%7B2%7D%7D%7BP_%7B1%7D%7D%29%20%3D%20%5Cfrac%7B-%5Ctext%7Bheat%20of%20vaporization%7D%7D%7BR%7D%20%5Ctimes%20%5B%5Cfrac%7B1%7D%7BT_%7B2%7D%7D%20-%20%5Cfrac%7B1%7D%7BT_%7B1%7D%7D%5D)
![ln (\frac{1.75 atm}{1 atm}) = \frac{-\text{heat of vaporization}}{8.314 J/mol K} \times [\frac{1}{351 K} - \frac{1}{336.6 K}]](https://tex.z-dn.net/?f=ln%20%28%5Cfrac%7B1.75%20atm%7D%7B1%20atm%7D%29%20%3D%20%5Cfrac%7B-%5Ctext%7Bheat%20of%20vaporization%7D%7D%7B8.314%20J%2Fmol%20K%7D%20%5Ctimes%20%5B%5Cfrac%7B1%7D%7B351%20K%7D%20-%20%5Cfrac%7B1%7D%7B336.6%20K%7D%5D)
= 
= 
= 3813.1 J/mol
Thus, we can conclude that the heat of vaporization of ethanol is 3813.1 J/mol.
Static electricity is the buildup of electric charges on surface of an object.
static electrical charges remain on the surface of the object until they bleed off to the ground or until they get quickly neutralised by a discharge.
Answer: many of the chemicals found in urban air are formed by chemical reactions driven by sunlight.
The mass of water is the same as the mass of ice
Weigh them both and there you go