It will have traveled 0.78 m. You find this by multiplying .013 by 60
Answer:
pH = 12.22
Explanation:
<em>... To make up 170mL of solution... The temperature is 25°C...</em>
<em />
The dissolution of Barium Hydroxide, Ba(OH)₂ occurs as follows:
Ba(OH)₂ ⇄ Ba²⁺(aq) + 2OH⁻(aq)
<em>Where 1 mole of barium hydroxide produce 2 moles of hydroxide ion.</em>
<em />
To solve this question we need to convert mass of the hydroxide to moles with its molar mass. Twice these moles are moles of hydroxide ion (Based on the chemical equation). With moles of OH⁻ and the volume we can find [OH⁻] and [H⁺] using Kw. As pH = -log[H⁺], we can solve this problem:
<em>Moles Ba(OH)₂ molar mass: 171.34g/mol</em>
0.240g * (1mol / 171.34g) = 1.4x10⁻³ moles * 2 =
2.80x10⁻³ moles of OH⁻
<em>Molarity [OH⁻] and [H⁺]</em>
2.80x10⁻³ moles of OH⁻ / 0.170L = 0.01648M
As Kw at 25°C is 1x10⁻¹⁴:
Kw = 1x10⁻¹⁴ = [OH⁻] [H⁺]
[H⁺] = Kw / [OH⁻] = 1x10⁻¹⁴/0.01648M = 6.068x10⁻¹³M
<em>pH:</em>
pH = -log [H⁺]
pH = -log [6.068x10⁻¹³M]
<h3>pH = 12.22</h3>
Answer:
An increase in the amount of CO2 well increase the rate of photosynthesis, Carbon dioxide concentration will directly affect the rate of photosynthesis as it is used in the photosynthesis reaction.Increased amount of CO2 will increase the rate of photosynthesis to a certain limit, after which a further increase in its amount will no longer increase the rate any further.
Hope this helps.
Cheers! :)
Explanation:
Assuming that moles of nitrogen present are 0.227 and moles of hydrogen are 0.681. And, initially there are 0.908 moles of gas particles.
This means that, for
moles of
+ moles of
= 0.908 mol
Since, 2 moles of
=
= 0.454 mol
As it is known that the ideal gas equation is PV = nRT
And, as the temperature and volume were kept constant, so we can write
=
= 
=
= 5.2 atm
Therefore, we can conclude that the expected pressure after the reaction was completed is 5.2 atm.