Answer:

Explanation:
2C₄H₁₀ + 13O₂ ⟶ 8CO₂ + 10H₂O
n/mol: 4.3
13 mol of O₂ react with 2 mol of 2C₄H₁₀

Ice melts when heat energy causes the molecules to move faster, breaking the hydrogen bonds between molecules to form liquid water.
Answer:
mass of HNO₃ = 0.378 g
Explanation:
Normality = Molarity * number of equivalents
Molarity = Normality/number of equivalents
normality of HNO₃ = 0.30 N, Volume = 20 mL
HNO₃ ionizes in the following way:
HNO₃(aq) ----> H⁺ + NO₃⁻
Therefore, number of equivalents for HNO₃ is 1
molarity of HNO₃ = 0.30/1 =0.30 mol/dm³
Using the formula, molarity = number of moles/volume in liters
number of moles = molarity * volume
Number of moles of HNO₃ = 0.30 mol/dm³ * 20ml * 1 dm³ /1000 mL
number of moles = 0.006 moles
From the formula, mass = number of moles * molar mass
molar mass of HNO₃ = 63.0 g/mol
mass = 0.006 * 63
mass of HNO₃ = 0.378 g
Answer:
The correct answer is "Iron and oxygen act as Fe3+ and O2− ions respectively, forming rust (Fe₂O₃) in the presence of water by the formation of an ionic bond".
Explanation:
Rust is formed when iron reacts with oxygen in the presence of water (either if the iron is submerged or exposed to moisture in the air), forming the chemical compound Fe₂O₃. The presence of water is needed for rust formation because iron and oxygen act as ions when they are exposed to water, particularly Fe3+ and O2− ions respectively. The bond formed between these two elements are ionic bonds, because it is comprised of the reaction between a metal (iron) and a non-metal (oxygen).
It describes the point at which the element is a solid liquid and has at a certain temperature and pressure