Genetics, blood type gene has two alleles, each allele has genotype A, B or O. The A and B are dominant, and O is recessive. So allele A combined with allele O is type A. Similarly, BO is type B, AA is type A, BB is type B, OO is type O, and AB is typeAB.
If both parents have type A blood, then the alleles could be AA or AO, thus the allele A frequency is 75%, allele O frequency is 25% for both parents.
So the chance of alleles OO is 25% × 25% = 6.25%,
alleles AA is 75% × 75% = 56.25%,
alleles AO is 75% × 25% = 18.75%,
alleles OA is 25% × 75% = 18.75%.
Since AA, AO and OA are blood type A, and OO is blood type O, thus their child has 6.25% chance to be blood type O and 93.75% chance to be blood type A.
The +/- is called the rhesus factor, with + being dominant, and - being recessive.
So if both parents are -, the kids are always -, otherwise the kids might be + or -.
Child Blood Type Estimate Table:
Father's Blood TypeABABOMother's
Blood
TypeAA/OA/B/AB/OA/B/ABA/OBA/B/AB/OB/OA/B/ABB/OABA/B/ABA/B/ABA/B/
Genetics, adaption, colonization
Ans : C - enzymatic action on carbohydrates ( enzyme amylase catalyses carbohydrate to maltose here in the mouth )
Answer:
Most animals obtain their nutrients by the consumption of other organisms. At the cellular level, the biological molecules necessary for animal function are amino acids, lipid molecules, nucleotides, and simple sugars. However, the food consumed consists of protein, fat, and complex carbohydrates.
Explanation: