Each step subtracts 3 from the previous number.
14 - 3 = 11
11 - 3 = 8
The sequence will continue:
8 - 3 = 5
5 - 3 = 2
2 - 3 = -1
Etc.
14, 11, 8, 5, 2, -1...
9514 1404 393
Answer:
5/9 m/min
Step-by-step explanation:
The depth of the water is 2/5 of the depth of the trough, so the width of the surface will be 2/5 of the width of the trough:
2/5 × 2 m = 4/5 m
Then the surface area of the water is ...
A = LW = (18 m)(4/5 m) = 14.4 m²
The rate of change of height multiplied by the area gives the rate of change of volume:
8 m³/min = (14.4 m²)(h')
h' = (8 m³/min)/(14.4 m²) = 5/9 m/min
To put an equation into (x+c)^2, we need to see if the trinomial is a perfect square.
General form of a trinomial: ax^2+bx+c
If c is a perfect square, for example (1)^2=1, 2^2=4, that's a good indicator that it's a perfect square trinomial.
Here, it is, because 1 is a perfect square.
To ensure that it's a perfect square trinomial, let's look at b, which in this case is 2.
It has to be double what c is.
2 is the double of 1, therefore this is a perfect square trinomial.
Knowing this, we can easily put it into the form (x+c)^2.
And the answer is: (x+1)^2.
To do it the long way:
x^2+2x+1
Find 2 numbers that add to 2 and multiply to 1.
They are both 1.
x^2+x+x+1
x(x+1)+1(x+1)
Gather like terms
(x+1)(x+1)
or (x+1)^2.
The answer is 24.25 hope it helps
Answer: Choice B
Range = {-3, 1, 5}
============================================
Explanation:
The domain is the set of all possible input x values. The range is the set of all possible y outputs.
Plug in each x value from the domain, one at a time, to get its corresponding range y value.
--------------------
Start with x = -3
f(x) = 2x+3
f(-3) = 2(-3)+3
f(-3) = -6+3
f(-3) = -3
So -3 is in the range.
--------------------
Move onto x = -1
f(x) = 2x+3
f(-1) = 2(-1)+3
f(-1) = -2+3
f(-1) = 1
1 is also in the range
--------------------
Finally plug in x = 1
f(x) = 2x+3
f(1) = 2(1)+3
f(1) = 2+3
f(1) = 5
The value 5 is the final value in the range.
--------------------
All of those values form the set {-3, 1, 5} which is the complete range.