Answer:
1). y = -7/5x - 4
2). y = 1/5x - 5
Step-by-step explanation:
In this question, we have to write the slope-intercept form of the given information.
Slope intercept form is: y = mx + b
Our "m" value is our slope and our "b" value is our y-intercept.
With that knowledge, we can plug in our given information to the slope-intercept equation:
1) slope = -7/5, y-intercept = -4
Plug -7/5 to "m" and -4 to "b"
y = -7/5x - 4
2) slope = 1/5, y-intercept = -5
Plug 1/5 to "m" and -5 to "b"
y = 1/5x - 5
The answer is about 13.9927.
You would divide 52/11 and then subtract that decimal by 18.65.
18.65-4.7272=13.9927.
Answer:

Step-by-step explanation:
The equation of the line through the point
&
can be represented by:

Making m the subject;

∴
we need to carry out the equation of the line through (0,1) and (1,2)
i.e
y - 1 = m(x - 0)
y - 1 = mx
where;

m = 1
Thus;
y - 1 = (1)x
y - 1 = x ---- (1)
The equation of the line through (1,2) & (4,1) is:
y -2 = m (x - 1)
where;


∴

-3(y-2) = x - 1
-3y + 6 = x - 1
x = -3y + 7
Thus: for equation of two lines
x = y - 1
x = -3y + 7
i.e.
y - 1 = -3y + 7
y + 3y = 1 + 7
4y = 8
y = 2
Now, y ranges from 1 → 2 & x ranges from y - 1 to -3y + 7
∴



![\iint_D 8y^2 \ dA =8 \int^2_1 \bigg ( [xy^2]^{-3y+7}_{y-1} \bigg ) \ dy](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cint%5E2_1%20%20%5Cbigg%20%28%20%5Bxy%5E2%5D%5E%7B-3y%2B7%7D_%7By-1%7D%20%5Cbigg%20%29%20%5C%20dy)
![\iint_D 8y^2 \ dA =8 \int^2_1 \bigg ( [y^2(-3y+7-y+1)]\bigg ) \ dy](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cint%5E2_1%20%20%5Cbigg%20%28%20%5By%5E2%28-3y%2B7-y%2B1%29%5D%5Cbigg%20%29%20%5C%20dy)
![\iint_D 8y^2 \ dA =8 \int^2_1 \bigg ([y^2(-4y+8)] \bigg ) \ dy](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cint%5E2_1%20%20%5Cbigg%20%28%5By%5E2%28-4y%2B8%29%5D%20%5Cbigg%20%29%20%5C%20dy)

![\iint_D 8y^2 \ dA =8 \bigg [\dfrac{ -4y^4}{4}+\dfrac{8y^3}{3} \bigg ]^2_1](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%5Cdfrac%7B%20-4y%5E4%7D%7B4%7D%2B%5Cdfrac%7B8y%5E3%7D%7B3%7D%20%5Cbigg%20%5D%5E2_1)
![\iint_D 8y^2 \ dA =8 \bigg [ -y^4+\dfrac{8y^3}{3} \bigg ]^2_1](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%20-y%5E4%2B%5Cdfrac%7B8y%5E3%7D%7B3%7D%20%5Cbigg%20%5D%5E2_1)
![\iint_D 8y^2 \ dA =8 \bigg [ -2^4+\dfrac{8(2)^3}{3} + 1^4- \dfrac{8\times (1)^3}{3}\bigg]](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%20-2%5E4%2B%5Cdfrac%7B8%282%29%5E3%7D%7B3%7D%20%2B%201%5E4-%20%5Cdfrac%7B8%5Ctimes%20%281%29%5E3%7D%7B3%7D%5Cbigg%5D)
![\iint_D 8y^2 \ dA =8 \bigg [ -16+\dfrac{64}{3} + 1- \dfrac{8}{3}\bigg]](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%20-16%2B%5Cdfrac%7B64%7D%7B3%7D%20%2B%201-%20%5Cdfrac%7B8%7D%7B3%7D%5Cbigg%5D)
![\iint_D 8y^2 \ dA =8 \bigg [ -15+ \dfrac{64-8}{3}\bigg]](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%20-15%2B%20%5Cdfrac%7B64-8%7D%7B3%7D%5Cbigg%5D)
![\iint_D 8y^2 \ dA =8 \bigg [ -15+ \dfrac{56}{3}\bigg]](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%20-15%2B%20%5Cdfrac%7B56%7D%7B3%7D%5Cbigg%5D)
![\iint_D 8y^2 \ dA =8 \bigg [ \dfrac{-45+56}{3}\bigg]](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%20%20%5Cdfrac%7B-45%2B56%7D%7B3%7D%5Cbigg%5D)
![\iint_D 8y^2 \ dA =8 \bigg [ \dfrac{11}{3}\bigg]](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%20%20%5Cdfrac%7B11%7D%7B3%7D%5Cbigg%5D)

Answer:
y= 3/2x- 4
Step-by-step explanation:
3/2 = mx
b= -4
y=mx+b
The solutions fo the inequality are all the points (x, y) that meet these 3 conditions.
- x ≠ 0
- y ≠ 0
- Sign(x) =sign(y)
<h3>
Which points are solutions of the inequality?</h3>
We want to find points of the form (x, y) that are solutions of the inequality:
x*y > 0
Clearly x and y must be different than zero.
So, for example if x = -1, y can be any negative number, for example y= -3
x*y > 0
(-1)*(-3) > 0
3 > 0
This is true.
Now if x = 1, y must be positive. LEt's take y = 103, then:
x*y > 0
1*103 > 0
103 > 0
Then we have 3 conditions:
- x ≠ 0
- y ≠ 0
- Sign(x) =sign(y)
The solutions fo the inequality are all the points (x, y) that meet these 3 conditions.
If you want to learn more about inequalities:
brainly.com/question/25275758
#SPJ1