The answer is “D. all of the above”!
Metal from the paper clip is attracted to the magnet, so it will naturally move toward and stick to the magnet. This will cause the paper clip to temporarily become a magnet for other metals. I hope this helped!
Since each student emits 100 W, so 170 students will emit:
total heat = 100 W * 170 = 17,000 W
Convert minutes to seconds:
time = 50 min * (60 s / min) = 3000 s
The energy is therefore:
E = 17,000 W * 3000 s
<span>E = 51 x 10^6 J = 51 MJ</span>
Answer:
26.5 m
Explanation:
= initial position of the object = 75.2 m
= final position of the object
= displacement of the object = - 48.7
Displacement of the object is given as the difference of final and initial position of the object

Inserting the values
- 48.7 = x - 75.2
x = 26.5 m
Answer:
Inverted (displaced downwards)
Explanation:
The pulse becomes INVERTED upon reflecting off the boundary with the wall. That is, an upward-displaced pulse will reflect off the end and return with a downward displacement. This inversion behavior will always be observed when the end of the medium is fixed, like this wall in this instance. This INVERSION BEHAVIOR can also be observed when the medium is connected to another more heavy or more dense medium. And in this case, when the pulse reaches the end of the medium, a portion of the pulse will reflect off the end and return with an inverted displacement. The heavier medium acts like a fixed end to cause the pulse to be inverted.
Summary: a pulse reaching the end of a medium becomes inverted whenever it either:
i. reflects off a fixed end,
ii. is moving in a less dense medium and reflects off a more dense medium.