Answer:
0.37sec
Explanation:
Period of oscillation of a simple pendulum of length L is:
T
=
2
π
×
√
(L
/g)
L=length of string 0.54m
g=acceleration due to gravity
T-period
T = 2 x 3.14 x √[0.54/9.8]
T = 1.47sec
An oscillating pendulum, or anything else in nature that involves "simple harmonic" (sinusoidal) motion, spends 1/4 of its period going from zero speed to maximum speed, and another 1/4 going from maximum speed to zero speed again, etc. After four quarter-periods it is back where it started.
The ball will first have V(max) at T/4,
=>V(max) = 1.47/4 = 0.37 sec
Coulombs law says that the force between any two charges depends on the amount of charges and distance between them. This force is directly proportional to the magnitude of the two charges and inversely proportional to the distance between them.

where
are charges,
is the distance between them and k is the coulomb constant.
case 1:

case 2

case 3:

Comparing the 3 cases:
The maximum potential force according to coulombs law is between -1 charge and +3 charge separated by a distance of 100 pm.
Answer:
The summary of the given statement is explained below throughout the explanation segment.
Explanation:
- Drain certain surfaces throughout warm water of such soap during the very first sink. This same sanitizing of bacteria would not destroy whether grime would be in the direction.
- Exfoliate the plates throughout plain water during the secondary drain. As with grime, the residual soap could avoid the kill off bacteria and viruses by the sanitizer.
Answer:
Explanation:
Expression for relative velocity
= 
= (.54 + .82 )c/ 
= 1.36 c / 1.4428
= .94 c
β = .94