Answer:
You can boil or evaporate the water and the salt will be left behind as a solid. If you want to collect the water, you can use distillation. This works because salt has a much higher boiling point than water. One way to separate salt and water at home is to boil the salt water in a pot with a lid.
Explanation:
When calcium carbonate is heated, it breaks down to form calcium oxide and carbon dioxide.
Thermal decomposition is the process in which heat is required.
It is also known as thermolysis.
It is processed in which a compound breaks into two or more products when the heat is supplied.
This reaction is used for the production of oxygen.
This reaction is also used for production of acidic as well as basic oxides.
CaCO3 on thermal decomposition gives:
CaCO3→CaO+CO2
CaO→ Basic oxide.
CO2→ Acidic oxide.
Answer:
<u>~</u><u>Law of Conservation of </u><u>energy~</u>
The law of conservation of energy states that energy can neither be created nor destroyed, only energy can be converted from one form to another.
Answer:
Option C.
Explanation:
The arrangement of electrons in their orbital follows certain rules.
The Hund's rule practically explained how electrons are distributed in their orbitals.
The Hund's rule states that electrons distributed among the orbitals of the same shell singly (without partner) before pairing occurs.
In the filling of these electrons in their orbitals, we fill in the electron without pairing first because electrons tends to repel each other before filling with the opposite spin as shown in the attached photo.
Answer is: f<span>ormula for the hydrated compound is CuSO</span>₄·3H₂O.
ω(H₂O) = 25,3% = 0,253.
ω(CuSO₄) = 100% - 25,3%.
ω(CuSO₄) = 74,7% = 0,747.
ω(H₂O) : M(H₂O) = ω(CuSO₄) : M(CuSO₄).
0,253 : M(H₂O) = 0,747 : 159,6 g/mol.
M(H₂O) = (0,253 · 159,6 g/mol) ÷ 0,747.
M(H₂O) = 54 g/mol.
N(H₂O) = 54 g/mol ÷ 18 g/mol.
N(H₂O) = 3.