Answer:
Metallic character decreases, and electronegativity increases.
Explanation:
Hello!
In this case, according to the organization of the periodic table, we can see that from left to right, the electronegativity increases as nonmetals are able to attract electrons more easily than metals.
Moreover, in contrast to the previous periodic trend, the metallic character decreases from left to right because the elements tend to decrease the capacity to lose electrons and consequently start attracting them.
Thus, the answer would be: "Metallic character decreases, and electronegativity increases".
Best regards!
Using the Rydberg formula, the spectral line of H - atom is suitable for this purpose is Paschen, ∞ → 3.
- Using the Rydberg formula;
1/λ = RH(1/nf^2 - 1/ni^2)
Given that;
λ = wavelength
RH = Rydberg constant
nf = final state
ni = initial state
- When final state = 3 and initial state = ∞
Then;
1/λ = 1 × 10^7 m-1 (1/3^2 - 1/ ∞^2)
1/λ = 1 × 10^7 m-1 (1/3^2 )
λ = 900 nm
Hence, the correct answer is Paschen, ∞ → 3
Learn more about the Rydberg formula; brainly.com/question/17753747
Answer:
Solubility is a chemical property referring to the ability for a given substance, the solute, to dissolve in a solvent. It is measured in terms of the maximum amount of solute dissolved in a solvent at equilibrium. The resulting solution is called a saturated solution.
Explanation:
Answer:
CaCl2
Explanation:
As temperature increases pressure also increases so when the temperature is at 25 degrees C CaCl2 is already soluable in 100g of h20
Answer:
- Option A): <em>Due to the constraints upton the angular momentum quantum number, the subshell </em><u><em>2d</em></u><em> does not exist.</em>
Explanation:
The <em>angular momentum quantum number</em>, identified with the letter l (lowercase L), number is the second quantum number.
This number identifies the shape of the orbital or <em>kind of subshell</em>.
The possible values of the angular momentum quantum number, l, are constrained by the value of the principal quantum number n: l can take values from 0 to n - 1.
So, you can use this guide:
Principal quantum Angular momentum Shape of the orbital
number, n quantum number, l
1 0 s
2 0, 1 s, p
3 0, 1, 2 s, p, d
Hence,
- <u>the subshell 2d (n = 2, l = 2) is not feasible</u>.
- 2s (option B) is possible: n = 2, l = 0
- 2p (option C) is possible: n = 2, l = 1