Answer:
the number of solute particles increases
Answer:
THE MOLAR MASS OF THE UNKNOWN MOLECULAR SUBSTANCE IS 200 G/MOL.
Explanation:
Mass of the unknown substance = 0.50 g
Freezing point of the solution = 3.9 °C
Freezing point of pure benzene = 5.5 °C
Freezing point dissociation constant Kf = 5.12°C/m
First, calculate the temperature difference between the freezing point of pure benzene and the final solution freezing point.
Change in temperature = 5.5 -3.9 = 1.6 °C
Next is to calculate the number of moles or molarity of the compound that dissolved.
Using the formula:
Δt = i Kf m
Assume i = 1
So,
1.6 °C = 1 * 5.12 * x/ 0.005 kg of benzene
x = 1.6 * 0.008 / 5.12
x = 0.0128 / 5.12
x = 0.0025 moles.
Next is to calculate the molar mass using the formula, molarity = mass / molar mass
Molar mass = mass / molarity
Molar mass = 0.50 g /0.0025
Molar mass = 200 g/mol
Hence, the molar mass of the unknown compound is 200 g/mol
The first option, collapsed in on itself.
The star's core mass becomes so dense that the resulting gravity implodes the star.
Interesting enough, the third option is kindof true too...some large and tenacious black holes that absorb other stars will form incredibly bright accretion disks around their perimeter before filling absorbing the star.
B, turns red litmus paper to blue