Answer:
y= -2/3x+6
Step-by-step explanation:
so answer is C
Step-by-step explanation:
Different Types of Indexes in SQL Server
Answer:
to provide interest in the subject
As per my experience,I used to hate math and always scored less marks,the moment I was going to high school I realized the importance of math towards the future, see you'll find maths in nearly all subjects like the 3 sciences, economics, geography, business e.t.c
Why did you write this question at first?, just take some free time and think about it,the only best way to learn maths is to take maths positively as the best and most valuable subject,if you want to ace math you have to race it, challenge math like you'd challenge anyone to a game, practice math if it's your weakest point, practice is very much needed to skill maths and never be shy to ask your teachers whether you are studying online/offline. You'll need to get the shy behaviour out of you whether you like /don't like your teacher or your an average student.
Concentrate while learning math, whether there's noise in you background or not, Nothing can stop you in excelling math if you have full concentration, positiveness and the "will" to do so.
if you're next to your exams then just one thing, Start now!!
hope this helps!
Answrer
Find out the what is the perimeter of the rectangle .
To prove
Now as shown in the figure.
Name the coordinates as.
A(−3, 4) ,B (7, 2) , C(6, −3) , and D(−4, −1) .
In rectangle opposite sides are equal.
Thus
AB = DC
AD = BC
Formula

Now the points A(−3, 4) and B(7, 2)





Thus

Now the points
A (−3, 4) , D (−4, −1)




Thus
Formula
Perimeter of rectangle = 2 (Length + Breadth)
Here






Perimeter of a rectangle = 30.6 units.
Therefore the perimeter of a rectangle is 30.6 units.
Answer:(x^2+y^2)^2=(x^2+y^2)(x^2+y^2)
Step-by-step explanation:
We can rewrite left side into right side form
(x^2+y^2)^2=(x^2+y^2)(x^2+y^2)
we can expand it
(x^2+y^2)^2=x^4+x^2y^2+x^2y^2+y^4
(x^2+y^2)^2=x^4+y^4+2x^2y^2
we can add and subtract 2x^2y^2
(x^2+y^2)^2=x^4+y^4+2x^2y^2+2x^2y^2-2x^2y^2
(x^2+y^2)^2=x^4-2x^2y^2+y^4+2x^2y^2+2x^2y^2
(x^2+y^2)^2=x^4-2x^2y^2+y^4+4x^2y^2
(x^2+y^2)^2=x^4-2x^2y^2+y^4+(2xy)^2
(x^2+y^2)^2=(x^2-y^2)^2+(2xy)^2