Answer:
The separation of kerosene, oil, and water are immiscible liquids, so they can be separated funnel.
<span>When a chemist mixes oxygen gas and hydrogen gas to form
water, which is composed of one oxygen and two hydrogen atoms per molecule. The hydrogen and oxygen atoms bounds together by making a bond called covalent bond.<span> In a covalent bond, two atoms are bound
together because they each want to "share" each other's electrons.</span></span>
Answer:
The answer is 5.10
Explanation:
<h3><u>Given</u>;</h3>
<h3>
<u>To </u><u>Find</u>;</h3>
We know that
pH + pOH = 7
pOH = 7 – pH
pOH = 7 – 1.90
pOH = 5.10
Thus, The pOH of the solution is 5.10
<h3>
Answer:</h3>
1031.4 Calories.
<h3>
Explanation:</h3>
We are given;
Mass of the copper metal = 50.0 g
Initial temperature = 21.0 °C
Final temperature, = 75°C
Change in temperature = 54°C
Specific heat capacity of copper = 0.382 Cal/g°C
We are required to calculate the amount of heat in calories required to raise the temperature of the copper metal;
Quantity of heat is given by the formula,
Q = Mass × specific heat capacity × change in temperature
= 50.0 g × 0.382 Cal/g°C × 54 °C
= 1031.4 Calories
Thus, the amount of heat energy required is 1031.4 Calories.
The formula to calculate osmotic pressure is
Osmotic Pressure = M R T
M = Molarity
R = Ideal Gas Constant
T = Temperature in Kelvin
So,
24.6/.2254kg=109.139g /kg >>>>> Molarity
109.139 x mols/92 g = 1.186 mols kg^-1
1.186 x 0.08134 x 298 K = 28.755 atm
<span>1.06852 x 0.08134 x 298K= 26.5 atm
The answer is 26.5</span>