Answer: Heat of vaporization is 41094 Joules
Explanation:
The vapor pressure is determined by Clausius Clapeyron equation:

where,
= initial pressure at 429 K = 760 torr
= final pressure at 415 K = 515 torr
= enthalpy of vaporisation = ?
R = gas constant = 8.314 J/mole.K
= initial temperature = 429 K
= final temperature = 515 K
Now put all the given values in this formula, we get
![\log (\frac{515}{760}=\frac{\Delta H}{2.303\times 8.314J/mole.K}[\frac{1}{429K}-\frac{1}{415K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B515%7D%7B760%7D%3D%5Cfrac%7B%5CDelta%20H%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B429K%7D-%5Cfrac%7B1%7D%7B415K%7D%5D)

Thus the heat of vaporization is 41094 Joules
What is most widely accepted today is the giant-impact theory. It the Moon formed during a collision between the Earth and another small planet, about the There may indeed be several objects in orbit around Earth.
Condensation is the process of watervapor in the air is changing into liquid water. Condensation is crucial to the water cycle because it is responsible for the formation of clouds. Condensation is also the opposite of evaporation
Bb, or mostly dominant with a little recessive