Answer:
The simplified mechanism and products are on the picture.
Explanation:
If we have the symmetrical alkene the addition of mercury and OH group is not regioselective but when we have more donors for one of Carbons in alkene then the OH group will go there.
Answer:
45.4 L
Explanation:
Using Ideal gas equation for same mole of gas as
Given ,
V₁ = 27.9 L
V₂ = ?
P₁ = 732 mmHg
P₂ = 385 mmHg
T₁ = 30.1 ºC
T₂ = -13.6 ºC
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (30.1 + 273.15) K = 303.25 K
T₂ = (-13.6 + 273.15) K = 259.55 K
Using above equation as:


Solving for V₂ , we get:
<u>V₂ = 45.4 L</u>
Answer:
The answer to your question is below
Explanation:
An atom with four electrons in its valence shell is capable of forming:
single bonds and atom with the described characteristics, can form 4 single bonds or a combination of single bonds and double or triple bonds. Ex alkanes
double bonds this atom can form one double bond and two single bonds or two double bonds. Ex alkenes
triple bonds this atom can form one triple bond and one single bond, Ex alkynes.
The role energy would have played in forming the black sand on the beach
will be through the erosion and movement of the particles.
Black sand from the beach are formed as a result of the erosion of volcanic
material , dark-colored rocks and minerals. Erosion helps to carry these
particles to the beach thereby making the color of the sand to become dark.
The wave energy present at the beach erodes and moves the materials to
different parts of the beach.
Read more on brainly.com/question/17905503