Answer:
How many grams of copper (II) nitrate is formed
Answer:
0.83 mL
Explanation:
Given data
- Initial concentration (C₁): 12 M
- Final concentration (C₂): 1.0 M
- Final volume (V₂): 10.0 mL
We can calculate the initial volume of HCl using the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂ / C₁
V₁ = 1.0 M × 10.0 mL / 12 M
V₁ = 0.83 mL
The required volume of the initial solution is 0.83 mL.
Answer:
22.27 °C = ΔT
Explanation:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m × c × ΔT
Given data:
mass = 28 g
heat absorbed = 58 cal
specific heat of copper = 0.093 cal/g .°C
temperature change =ΔT= ?
Solution:
Q = m × c × ΔT
58 cal = 28 g × 0.093 cal /g.°C × ΔT
58 cal = 2.604 cal.°C × ΔT
58 cal / 2.604 cal .°C = ΔT
22.27 °C = ΔT
Answer:
<h2>
0.50 m/s</h2><h2>
</h2>
Explanation:
Velocity = distance over time
where distance = 5.20 m
time = 10.4 s.
velocity = <u> 5.20 m </u>
10.4 s.
= 0.50 m/s
Answer:
363C
Explanation:
V = KT and T = V/K
3.5=k(35+273) = 308k
k=3.5/308 =0.011
new T=7.0/0.011=636K = 636-273 =363C