<span>Antibiotics work by selectively targeting the reproduction or growth of specific bacteria cells and by not attacking human DNA. Antibiotics do not, or should not, target and affect human DNA gyrases, although they should target the specific bacteria growth. The host, (human) DNA needs to remain unharmed while the bacteria does not replicate.</span>
Answer and Explanation:
The Huntington disease is caused by a mutation in the gene that codifies for the Huntingtin protein (Htt). The mutation produces an altered form of the protein leading to the neuron´s death in certain areas of the brain.
The Huntington disease characterizes for being,
- Hereditary, passing from generation to generation. To express the disease, a person must have been born with an altered gene.
- Autosomal, affecting men and women equally, because the mutated gene is located on an autosomal chromosome.
- Dominant, which means that by getting only one copy of the altered gene coming from any of the parents, the receiving person will express the disease. The mutation in the gene dominates over the normal gene copy.
- Expressed by heterozygosis. Most people affected by the disease are heterozygous, with a normal copy and a mutated copy.
There are just a few cases all around the world (3% approximately) in which the disease is expressed with no family history. The progenitors are not affected by the mutation. These cases are very rare and are called <u>"de-novo" mutations.</u> A new mutation is spontaneously produced and it is not inherited from any of the parentals. It consists of an increase in the number of CAG repetitions. In a normal person, the number of CAG repetitions is less than 35. When there are 40 or more repetitions it occurs the disease. But when there are between 35 and 39 repetitions, the penetrance of the disease is incomplete. This is a "gray zone". Those alleles that fall in the gray zone are unstable and might produce the HD. Individuals with these unstable alleles have a tendency to increase the number of repetitions from generation to generation until the number reaches 40 repetitions and the person expresses the disease. This <u>usually occurs in the paternal germinal line</u>, as it is particularly unstable in sperm and probably meiosis greatly affects their instability, causing an increase in the number of CAG repeats.
Answer:
Normal Strand: alanine - methionine - histidine
Mutated Strand: glutamine - cysteine - no third amino acid.
Explanation:
<h3>mRNA Structure</h3>
Messenger ribonucleic acid (mRNA) is the RNA that is used in cells for protein synthesis. It has a single strand made by the transcription of DNA by RNA polymerase. It contains four nucleotides: Adenine (A), Guanine (G), Cytosine (C), and Uracil (U).
<h3>DNA Replication</h3>
Before transcribing, we need to create the complementary strand of the DNA. We're going to write out the nucleotides of the complementary strand by matching the nucleotides in these pairs: (A & T) and (C & G).
Normal Strand: GCA ATG CAC
Complementary Strand: CGT TAC GTG
Next, we can transcribe this to find our mRNA. We're going to do the same thing to the complementary DNA strand, but with Uracils instead of Thymines. So our pairs are: (A & U) and (C & G)
Complementary DNA Strand: CGT TAC GTG
mRNA Strand: GCA AUG CAC
You'll notice that the mRNA strand is almost exactly like the new mRNA strand, but with Uracil instead of Thymine.
<h3>Reading Codons</h3>
Each set of three nucleotides is known as a codon, which encodes the amino acids that ribosomes make into proteins. To read the codons, you need to have a chart like the one I attached. Start in the middle and work your way to the edge of the circle. Some amino acids have multiple codons. There are also "stop" and "start" codons that signify the beginning and ends of proteins.
mRNA Strand: GCA AUG CAC
Amino Acids: Ala Met His
Our sequence is alanine, methionine, and histidine.
<h3>Frameshift Mutations</h3>
A frameshift mutation occurs when a nucleotide is either added or removed from the DNA. It causes your reading frame to shift and will mess up every codon past where the mutation was. This is different than a point mutation, where a nucleotide is <em>swapped</em> because that will only mess up the one codon that it happened in. Frameshift mutations are usually more detrimental than point mutations because they cause wider spread damage.
<h3>Mutated Strand</h3>
Let's repeat what we did earlier on the mutated strand to see what changed.
Mutated Strand: CAA TGC AC
Complementary Strand: GTT ACG TG
---
Complementary DNA Strand: GTT ACG TG
mRNA Strand: CAA UGC AC
---
mRNA Strand: CAA UGC AC
Amino Acids: Glu Cys X
---
Our amino acid sequence is glutamine, cysteine, and no third amino acid.
As you can see, removing the first nucleotide of the strand caused every codon to change. The last codon is now incomplete and won't be read at all. If this happened in a cell, the protein that was created from this mutated strand would be incorrect and may not function completely or at all.
Answer:
Ocean currents bring nutrient-rich water into coastal regions.
Explanation:
About 70 percent of our planet is covered by water. The earth has been declared a "blue planet" because it looks blue from space. About 96 percent of this water is the sea or salt water, made up of the ocean that covers the Earth.
Within these oceans, there are many different types of habitats or environments inhabited by plants and animals, from the freezing of polar ice to tropical coral reefs. Most marine life is found in coastal habitats.
The correct answer would be the last one: "evolved from past organisms." This theory basically just states that all living organisms evolved from a single common ancestor. Hope this helped! :)