Answer:
![A = \left[\begin{array}{ccc}1&-4&2\\2&6&-6\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-4%262%5C%5C2%266%26-6%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given




Required
Find the standard matrix
The standard matrix (A) is given by

Where
![T(x) = [T(e_1)\ T(e_2)\ T(e_3)]\left[\begin{array}{c}x_1&x_2&x_3\\-&&x_n\end{array}\right]](https://tex.z-dn.net/?f=T%28x%29%20%3D%20%5BT%28e_1%29%5C%20T%28e_2%29%5C%20T%28e_3%29%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%26x_2%26x_3%5C%5C-%26%26x_n%5Cend%7Barray%7D%5Cright%5D)
becomes
![Ax = [T(e_1)\ T(e_2)\ T(e_3)]\left[\begin{array}{c}x_1&x_2&x_3\\-&&x_n\end{array}\right]](https://tex.z-dn.net/?f=Ax%20%3D%20%5BT%28e_1%29%5C%20T%28e_2%29%5C%20T%28e_3%29%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%26x_2%26x_3%5C%5C-%26%26x_n%5Cend%7Barray%7D%5Cright%5D)
The x on both sides cancel out; and, we're left with:
![A = [T(e_1)\ T(e_2)\ T(e_3)]](https://tex.z-dn.net/?f=A%20%3D%20%5BT%28e_1%29%5C%20T%28e_2%29%5C%20T%28e_3%29%5D)
Recall that:



In matrix:
is represented as: ![\left[\begin{array}{c}a\\b\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Da%5C%5Cb%5Cend%7Barray%7D%5Cright%5D)
So:
![T(e_1) = (1,2) = \left[\begin{array}{c}1\\2\end{array}\right]](https://tex.z-dn.net/?f=T%28e_1%29%20%3D%20%281%2C2%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
![T(e_2) = (-4,6)=\left[\begin{array}{c}-4\\6\end{array}\right]](https://tex.z-dn.net/?f=T%28e_2%29%20%3D%20%28-4%2C6%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-4%5C%5C6%5Cend%7Barray%7D%5Cright%5D)
![T(e_3) = (2,-6)=\left[\begin{array}{c}2\\-6\end{array}\right]](https://tex.z-dn.net/?f=T%28e_3%29%20%3D%20%282%2C-6%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C-6%5Cend%7Barray%7D%5Cright%5D)
Substitute the above expressions in ![A = [T(e_1)\ T(e_2)\ T(e_3)]](https://tex.z-dn.net/?f=A%20%3D%20%5BT%28e_1%29%5C%20T%28e_2%29%5C%20T%28e_3%29%5D)
![A = \left[\begin{array}{ccc}1&-4&2\\2&6&-6\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-4%262%5C%5C2%266%26-6%5Cend%7Barray%7D%5Cright%5D)
Hence, the standard of the matrix A is:
![A = \left[\begin{array}{ccc}1&-4&2\\2&6&-6\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-4%262%5C%5C2%266%26-6%5Cend%7Barray%7D%5Cright%5D)
You have a rectangular prism on your hands. The formula for the volume of a rectangular prism is
(B/2) • l
Where B is the area of the base, and l is the length.
If you notice, you do NOT have the height of the triangle. However, you know that it is an equilateral triangle. So, you may split the triangle into two. Once you do, you can see that it is a right triangle. It’s hypotenuse is 3. If you know your triangles, you will realize that this is a 30 60 90 triangle. Therefore, the height will be 1.5 * sqrt(3)
So, to get B...
3 * 1.5sqrt(3)
4.5sqrt(3)
(Divide by 2)
2.25sqrt(3)
O
(9sqrt(3))/4
Multiply by the length of the prism, 6
This is your final answer in fraction form
27
— 2^rt(3)
2
Answer:
dgrfgfgrfsdfsg
Step-by-step explanation:
aeswrfehghfdgsgbgdfhtgrtfdgf
Given the functions
(a) f(x) = x³ + 5x² + x
(b) f(x) = x² + x
(c) f(x) = -x
Function (a)
f(-x) = (-x)³ + 5(-x)² + (-x)
= -x³ + 5x² - x
= -(x³ - 5x² + x)
The function is neither even nor odd.
Function (b)
f(-x) = (-x)² + (-x)
= -(-x² + x)
The function is neither even nor odd.
Function (c)
f(-x) = -(-x)
= x
= -f(x)
Because f(-x) = -f(x) the function is odd.
Answer: f(x) = -x is an odd function.
Answer:
The two integers are -1 and -11
Step-by-step explanation:
If you add -1 to -11, you would apply the rule of adding negatives (add then put the sign of the larger number). 11+1=12. They are both negative, so it would then become -12. -1 X -11=11 because when multiplying negatives, two of the same sign are positive