Solution :
From the balanced chemical equation, we can say that 1 moles of KBr will produce 1 moles of KCl .
Moles of KBr in 102 g of potassium bromide.
n = 102/119.002
n = 0.86 mole.
So, number of miles of KCl produced are also 0.86 mole.
Mass of KCl produced :

Hence, this is the required solution.
1)
-Lithium: Lithium got 3 protons, so it atomic number is 3. It is located on the first column of the periodic table, and belonging to the alkali metal. So lithium is a metal. Lithium is highly reactive.
-Neon: It is located on the 18th column of the periodic table, and belong to the noble gases. So Neon is a nonmetal. Neon's reactivity is very low.
-Fluorine: Located on the 17th column of the periodic metal, fluorine is a nonmetal, and belong to the halogen family. Fluorine's reactivity is high.
2)
-Vertical columns of the periodic table are called columns. There is 18 column in the periodic table, and each one represent a chemical family.
-Horizontal rows of the periodic table care called periods. There is 7 periods in the periodic table.
-The number of protons in an atom is that element's atomic number. And since the atom is electrically neutral, the number of protons is equal to the number of electrons. So if you have the number of electrons, you can still find the atomic number.
-The total of protons and neutrons in an atom is that element's atomic mass. Based on the formula A = Z + N, where A represents the atomic mass, Z the atomic number (number of protons) and N the number of neutrons.
-The elements in group 1 are the most reactive metals. This group is called the Alkali metals. They only have 1 electron in their outer shell which makes them always ready to lose an electron in an ionic bonding.
-The elements in group 17 are the most reactive nonmetals. This group is called the Halogens, with 7 electrons in their outer shell which makes them always ready to win an electron in an ionic bonding.
-The elements in group 18 are the most unreactive elements. This group is called the Noble gases. Their outer shell is always full, so it can't do reactions.
Hope this Helps! :)
When equilibrium has been reached so, according to this formula we can get the specific heat of the unknown metal and from it, we can define the metal as each metal has its specific heat:
Mw*Cw*ΔTw = Mm*Cm*ΔTm
when
Mw → mass of water
Cw → specific heat of water
ΔTw → difference in temperature for water
Mm→ mass of metal
Cw→ specific heat of the metal
ΔTm → difference in temperature for metal
by substitution:
100g * 4.18 * (40-39.8) = 8.23 g * Cm * (50-40)
∴ Cm = 83.6 / 82.3 = 1.02 J/g.°C
when the Cm of the Magnesium ∴ the unknown metal is Mg
Answer:
5
Explanation:
they are all significant All non-zero numbers ARE significant
<u>Answer:</u>
The common name for the compound H2O is water.
<u>Explanation:</u>
The systemic name of H2O is Dihydrogen monoxide.