Answer:

General Formulas and Concepts:
<u>Algebra I</u>
<u>Calculus</u>
Antiderivatives - integrals/Integration
Integration Constant C
U-Substitution
Integration Property [Multiplied Constant]: 
Trig Integration:
Step-by-step explanation:
<u>Step 1: Define</u>
<u />
<u />
<u />
<u>Step 2: Integrate Pt. 1</u>
- [Integral] Factor fraction denominator:

- [Integral] Integration Property - Multiplied Constant:

<u>Step 3: Identify Variables</u>
<em>Set up u-substitution for the arctan trig integration.</em>

<u>Step 4: Integrate Pt. 2</u>
- [Integral] Substitute u-du:

- [Integral] Trig Integration:
![\displaystyle \frac{1}{9}[\frac{1}{\frac{2}{3}}arctan(\frac{u}{\frac{2}{3}})] + C](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B1%7D%7B9%7D%5B%5Cfrac%7B1%7D%7B%5Cfrac%7B2%7D%7B3%7D%7Darctan%28%5Cfrac%7Bu%7D%7B%5Cfrac%7B2%7D%7B3%7D%7D%29%5D%20%2B%20C)
- [Integral] Simplify:
![\displaystyle \frac{1}{9}[\frac{3}{2}arctan(\frac{3u}{2})] + C](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B1%7D%7B9%7D%5B%5Cfrac%7B3%7D%7B2%7Darctan%28%5Cfrac%7B3u%7D%7B2%7D%29%5D%20%2B%20C)
- [integral] Multiply:

- [Integral] Back-Substitute:

Topic: AP Calculus AB
Unit: Integrals - Arctrig
Book: College Calculus 10e
We know that
the equation of the parabola is of the form
y=ax²+bx+c
in this problem
y=1/4x²−x+3
where
a=1/4
b=-1
c=3
the coordinates of the focus are
(-b/2a,(1-D)/4a)
where D is the discriminant b²-4ac
D=(-1)²-4*(1/4)*3-----> D=1-3---> D=-2
therefore
x coordinate of the focus
-b/2a----> 1/[2*(-1/4)]----> 2
y coordinate of the focus
(1-D)/4a------> (1+2)/(4/4)---> 3
the coordinates of the focus are (2,3)
Answer:
80%, 41/50, 0.83
Step-by-step explanation:
80% = 0.80
41/50 = 0.82
0.83 = 0.83
Answer:
x = 4 and 3
Step-by-step explanation:
[7±√(-7)²-4(1)(12)]/2
x = 4, 3
Answer:
Point (1,8)
Step-by-step explanation:
We will use segment formula to find the coordinates of point that will partition our line segment PQ in a ratio 3:1.
When a point divides any segment internally in the ratio m:n, the formula is:
![[x=\frac{mx_2+nx_1}{m+n},y= \frac{my_2+ny_1}{m+n}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7Bmx_2%2Bnx_1%7D%7Bm%2Bn%7D%2Cy%3D%20%5Cfrac%7Bmy_2%2Bny_1%7D%7Bm%2Bn%7D%5D)
Let us substitute coordinates of point P and Q as:
,




![[x=\frac{4}{4},y=\frac{32}{4}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7B4%7D%7B4%7D%2Cy%3D%5Cfrac%7B32%7D%7B4%7D%5D)
Therefore, point (1,8) will partition the directed line segment PQ in a ratio 3:1.