1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
defon
3 years ago
5

If x and y are different numbers from 1-50 what is the greatest possible value for (x+y)/(x-y)

Mathematics
1 answer:
fiasKO [112]3 years ago
5 0

Answer:

99

Step-by-step explanation:

Evaluate (x+y)/(x-y) for greatest possible value with the following constraints:

x ≠ y

1 ≤ x ≤ 50

1 ≤ y ≤ 50

To achieve greatest possible value:

Numerator should be as large as possible.

Denominator should be as small as possible without being negative.

x = 50

y = 49

= (50 + 49)/(50 - 49)

= 99/1 = 99

You might be interested in
Solve the Anti derivative.​
Alex Ar [27]

Answer:

\displaystyle \int {\frac{1}{9x^2+4}} \, dx = \frac{1}{6}arctan(\frac{3x}{2}) + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Antiderivatives - integrals/Integration

Integration Constant C

U-Substitution

Integration Property [Multiplied Constant]:                                                                \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Trig Integration:                                                                                                           \displaystyle \int {\frac{du}{a^2 + u^2}} = \frac{1}{a}arctan(\frac{u}{a}) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \int {\frac{1}{9x^2 + 4}} \, dx<u />

<u />

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Factor fraction denominator:                                                         \displaystyle \int {\frac{1}{9(x^2 + \frac{4}{9})}} \, dx
  2. [Integral] Integration Property - Multiplied Constant:                                   \displaystyle \frac{1}{9} \int {\frac{1}{x^2 + \frac{4}{9}}} \, dx

<u>Step 3: Identify Variables</u>

<em>Set up u-substitution for the arctan trig integration.</em>

\displaystyle u = x \\ a = \frac{2}{3} \\ du = dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Substitute u-du:                                                                               \displaystyle \frac{1}{9} \int {\frac{1}{u^2 + (\frac{2}{3})^2} \, du
  2. [Integral] Trig Integration:                                                                               \displaystyle \frac{1}{9}[\frac{1}{\frac{2}{3}}arctan(\frac{u}{\frac{2}{3}})] + C
  3. [Integral] Simplify:                                                                                           \displaystyle \frac{1}{9}[\frac{3}{2}arctan(\frac{3u}{2})] + C
  4. [integral] Multiply:                                                                                           \displaystyle \frac{1}{6}arctan(\frac{3u}{2}) + C
  5. [Integral] Back-Substitute:                                                                             \displaystyle \frac{1}{6}arctan(\frac{3x}{2}) + C

Topic: AP Calculus AB

Unit: Integrals - Arctrig

Book: College Calculus 10e

7 0
2 years ago
What is the focus of the parabola? <img src="https://tex.z-dn.net/?f=y%3D%20%5Cfrac%7B1%7D%7B4%7D%20x%5E%7B2%7D%20-x%2B3" id="Te
OlgaM077 [116]
We know that
the equation of the parabola is of the form
y=ax²+bx+c
in this problem
y=1/4x²−x+3
where
a=1/4
b=-1
c=3
 the coordinates of the focus are
(-b/2a,(1-D)/4a)
where D is the discriminant b²-4ac
D=(-1)²-4*(1/4)*3-----> D=1-3---> D=-2
therefore
x coordinate of the focus
-b/2a----> 1/[2*(-1/4)]----> 2

y coordinate of the focus
(1-D)/4a------> (1+2)/(4/4)---> 3

the coordinates of the focus are (2,3)
3 0
3 years ago
Read 2 more answers
Order the numbers from least to greatest 41/50, 0.83, 80%​
Tresset [83]

Answer:

80%, 41/50, 0.83

Step-by-step explanation:

80% = 0.80

41/50 = 0.82

0.83 = 0.83

8 0
2 years ago
1. <br>Solve the quadratic equation using quadratic formula :<br><br>x2 – 7x + 12 = 0​
frez [133]

Answer:

x = 4 and 3

Step-by-step explanation:

[7±√(-7)²-4(1)(12)]/2

x = 4, 3

3 0
2 years ago
Directed line segment has endpoints P(– 8, – 4) and Q(4, 12). Determine the point that partitions the directed line segment in a
larisa86 [58]

Answer:

Point (1,8)  

Step-by-step explanation:

We will use segment formula to find the coordinates of point that will partition our line segment PQ in a ratio 3:1.

When a point divides any segment internally in the ratio m:n, the formula is:

[x=\frac{mx_2+nx_1}{m+n},y= \frac{my_2+ny_1}{m+n}]

Let us substitute coordinates of point P and Q as:

x_1=-8,

y_1=-4

x_2=4

y_2=12

m=3

n=1

[x=\frac{(3*4)+(1*-8)}{3+1},y=\frac{(3*12)+(1*-4)}{3+1}]

[x=\frac{12-8}{4},y=\frac{36-4}{4}]

[x=\frac{4}{4},y=\frac{32}{4}]

[x=1,y=8]

Therefore, point (1,8) will partition the directed line segment PQ in a ratio 3:1.

   

7 0
3 years ago
Other questions:
  • Simplify <br><br> -2.4 divided by 0.03 <br><br><br><br> -80<br><br> -23.7<br><br> -2.37<br><br> -8
    14·1 answer
  • What is 20% off of 35
    12·2 answers
  • Ethan ran 11 miles in 2 hours.what is the unit rate of miles to hour?
    15·1 answer
  • a crate of tennis balls measures 25 inches by 25 inches by 15 inches. each tennis ball has a radius of 1.35 inches. How many ten
    9·1 answer
  • What is 0.5 as a percent?
    15·2 answers
  • PLEASE HELP
    10·1 answer
  • Which ordered pair is a solution to the equation y = 6x - 4?
    11·1 answer
  • What do all these numbers have in common ?
    10·2 answers
  • What is the answer to 8(3.5x−2)≥40
    5·2 answers
  • Solve 3(4y + 6) greater equal to -2(3-6y) show work pls
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!