1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Furkat [3]
3 years ago
14

In comparison to radio waves, visible light has:

Physics
1 answer:
Alexxx [7]3 years ago
8 0

Answer:

Visible light has a shorter wavelength than radio waves

You might be interested in
ONLY 2 DAYS LEFT AND 5 WEEKS SUMMER BREAK FOR ME WHY NOT TODAY BE THE LAST DAY-
amm1812
UGH I END SCHOOL JUNE 25
6 0
3 years ago
A bus accelerates to 60 m/s to the east in 10 s. What is the buses acceleration? 2. A car traveling at 10.0 m/s to the west acce
professor190 [17]

Answers:

1) a=6\frac{m}{s^{2}}

2) t=8s

Explanation:

1) Acceleration a is defined as the variation of Velocity V in time t :  

a=\frac{V}{t}  (1)

A body also has acceleration when it changes its direction.

In this case we have a bus with a velocity of 60m/s to the east, that accelerates in a time 10s. So, we have to find the bus's acceleration:

a=\frac{60m/s}{10s}  (2)

a=6m/s^{2}  (3)  This is the bus's accelerration

2) Now we have a car that accelerates 2m/s^{2}  to the west in order to reach a speed of 16m/s in the same direction, and we have to find the time t it takes to the car to reach that velocity.

Therefore we have to find  t from (1):

t=\frac{V}{a}  (4)

t=\frac{16m/s}{2m/s^{2}}  (5)

Finally:

t=8s  (6)

3 0
4 years ago
Please help! Will mark Brainliest.
valentinak56 [21]

Answer:

18 Nm

Explanation:

if the correct answer

5 0
3 years ago
For this discussion, you will work in groups to answer the questions. In a video game, airplanes move from left to right along t
Mariulka [41]

Answer:

When fired from (1,3) the rocket will hit the target at (4,0)

When fired from (2, 2.5) the rocket will hit the target at (12,0)

When fired from (2.5, 2.4) the rocket will hit the target at (\frac{35}{2},0)

When fired from (4,2.25) the rocket will hit the target at (40,0)

Explanation:

All of the parts of the problem are solved in the same way, so let's start with the first point (1,3).

Let's assume that the rocket's trajectory will be a straight line, so what we need to do here is to find the equation of the line tangent to the trajectory of the airplane and then find the x-intercept of such a line.

In order to find the line tangent to the graph of the trajectory of the airplane, we need to start by finding the derivative of such a function:

y=2+\frac{1}{x}

y=2+x^{-1}

y'=-x^{-2}

y'=-\frac{1}{x^{2}}

so, we can substitute the x-value of the given point into the derivative, in this case x=1, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(1)^{2}}

m=y'=-1

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-3=-1(x-1})

y-3=-1x+1

y=-x+1+3

y=-x+4

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-x+4=0

and solve for x

x=4

so, when fired from (1,3) the rocket will hit the target at (4,0)

Now, let's calculate the coordinates where the rocket will hit the target if fired from (2, 2.5)

so, we can substitute the x-value of the given point into the derivative, in this case x=2, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(2)^{2}}

m=y'=-\frac{1}{4}

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-2.5=-\frac{1}{4}(x-2})

y-2.5=-\frac{1}{4}x+\frac{1}{2}

y=-\frac{1}{4}x+\frac{1}{2}+\frac{5}{2}

y=-\frac{1}{4}x+3

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-\frac{1}{4}x+3=0

and solve for x

x=12

so, when fired from (2, 2.5) the rocket will hit the target at (12,0)

Now, let's calculate the coordinates where the rocket will hit the target if fired from (2.5, 2.4)

so, we can substitute the x-value of the given point into the derivative, in this case x=2.5, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(2.5)^{2}}

m=y'=-\frac{4}{25}

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-2.4=-\frac{4}{25}(x-2.5})

y-2.4=-\frac{4}{25}x+\frac{2}{5}

y=-\frac{4}{25}x+\frac{2}{5}+2.4

y=-\frac{4}{25}x+\frac{14}{5}

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-\frac{4}{25}x+\frac{14}{5}=0

and solve for x

x=\frac{35}{20}

so, when fired from (2.5, 2.4) the rocket will hit the target at (\frac{35}{2},0)

Now, let's calculate the coordinates where the rocket will hit the target if fired from (4, 2.25)

so, we can substitute the x-value of the given point into the derivative, in this case x=4, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(4)^{2}}

m=y'=-\frac{1}{16}

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-2.25=-\frac{1}{16}(x-4})

y-2.25=-\frac{1}{16}x+\frac{1}{4}

y=-\frac{1}{16}x+\frac{1}{4}+2.25

y=-\frac{1}{16}x+\frac{5}{2}

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-\frac{1}{16}x+\frac{5}{2}=0

and solve for x

x=40

so, when fired from (4,2.25) the rocket will hit the target at (40,0)

I uploaded a graph that represents each case.

8 0
3 years ago
Name 3 renewable energy resources
Ad libitum [116K]
Solar energy, wind energy, hydro energy
7 0
3 years ago
Read 2 more answers
Other questions:
  • What information does the atomic mass of an element provide?
    9·1 answer
  • You are on a frozen pond, and the ice starts to crack. if you lie down on the ice and begin to crawl, this will
    5·1 answer
  • Comparing objects in a related group can reveal patterns among them. These patterns in turn can help us learn more about those o
    5·1 answer
  • A displacement vector is 34.0 m in length and is directed 60.0° east of north. What are the components of this vector? Northward
    15·1 answer
  • Two waves with equal amplitude meet each other, resulting in a wave zero amplitude. Which phenomenon explains this result?
    14·2 answers
  • Question 1 This is slowing the flow of electrons (the current) and where some of the electrons' energy gets converted into heat.
    13·2 answers
  • The Chair o
    11·1 answer
  • a An object is tarown up with a velocity v = 6.02 +7.0j. Calculate the (1) time taken reach the maximum height (ii) the horizont
    7·2 answers
  • A particle travels in a circle of radius 14 m at a constant speed of 21 m/s. What is the magnitude of the acceleration (in m/s2)
    14·1 answer
  • What is the largest structure people have put into space?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!