1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
3 years ago
11

A man with a mass of 65.0 kg skis down a frictionless hill that is 5.00 m high. At the bottom of the hill the terrain levels out

. As the man reaches the horizontal section, he grabs a 20.0-kg backpack and skis off a 2.00-m-high ledge. At what horizontal distance from the edge of the ledge does the man land (the man starts at rest)?
Physics
2 answers:
anzhelika [568]3 years ago
7 0

Answer:

The horizontal distance is 4.823 m

Solution:

As per the question:

Mass of man, m = 65.0 kg

Height of the hill, H = 5.00 m

Mass of the backpack, m' = 20.0 kg

Height of ledge, h = 2 m

Now,

To calculate the horizontal distance from the edge of the ledge:

Making use of the principle of conservation of energy both at the top and bottom of the hill (frictionless), the total mechanical energy will remain conserved.

Now,

KE_{initial} + PE_{initial} = KE_{final} + PE_{final}

where

KE = Kinetic energy

PE = Potential energy

Initially, the man starts, form rest thus the velocity at start will be zero and hence the initial Kinetic energy will also be zero.

Also, the initial potential energy will be converted into the kinetic energy thus the final potential energy will be zero.

Therefore,

0 + mgH = \frac{1}{2}mv^{2} + 0

2gH = v^{2}

v = \sqrt{2\times 9.8\times 5} = 9.89\ m/s

where

v = velocity at the hill's bottom

Now,

Making use of the principle of conservation of momentum in order to calculate the velocity after the inclusion, v' of the backpack:

mv = (m + m')v'

65.0\times 9.89 = (65.0 + 20.0)v'

v' = 7.56\ m/s

Now, time taken for the fall:

h = \frac{1}{2}gt^{2}

t = \sqrt{\frac{2h}{g}}

t = \sqrt{\frac{2\times 2}{9.8} = 0.638\ s

Now, the horizontal distance is given by:

x = v't = 7.56\times 0.638 = 4.823\ m

Evgen [1.6K]3 years ago
4 0

Answer

given,

mass of the man = 65 kg

height = 5 m

mass of the back pack = 20 kg

skis off to 2.00 m high ledge

horizontal distance =

speed of the person before they grab back pack is equal to potential and kinetic energy

mgh= \dfrac{1}{2}mv^2

v = \sqrt{2gh}

v = \sqrt{2\times 9.8 \times 5}

v = 9.89 m/s

now he perform elastic collision

v = \dfrac{m_1v_1}{m_1+m_2}

v = \dfrac{65\times 9.89}{65+20}

v = 7.57 m/s

time taken by the skies to fall is

h = \dfrac{1}{2}gt^2

t = \sqrt{\dfrac{2h}{g}}

t = \sqrt{\dfrac{2\times 2}{9.8}}

t = 0.6388 s

distance

d = v x t

d = 7.57 x 0.6388

d = 4.84 m

You might be interested in
If a 70-kg swimmer pushed off a pool wall with a force of 250N at what rate will the swimmer accelerate from the wall
Vlad [161]
F = ma
250 = 70 x a
a = 250/70
a = 3.57
5 0
3 years ago
An electrician finds that a 1 m length of a certain type of wire has a resistance of 0.24 Ω . What is the total resistance of th
zlopas [31]

The resistance of a given conductor depends on its electrical resistivity (\rho), its length(L) and its cross-sectional area (A), as follows:

R=\frac{\rho L}{A}

In this case, we have L'=138L, \rho'=\rho and A'=A. So, the total resistance of the wire with length of 138m is:

R'=\frac{\rho' L'}{A'}\\R'=\frac{\rho 138L}{A}\\R'=138\frac{\rho L}{A}\\R'=138R\\R'=138(0.24\Omega)\\R'=33.12\Omega

5 0
3 years ago
What are the characteristics of high energy waves?
Temka [501]
Amplitude and frequency
4 0
3 years ago
Read 2 more answers
A projectile is fired from the ground at a velocity of 30.0 m/s, 35.0 º from the horizontal. What is the maximum height the proj
Norma-Jean [14]

Answer:

Vy = V sin theta = 30 * ,574 = 17.2 m/s

t1 = 17.2 / 9.8 = 1.76 sec to reach max height

Max height = 17.2 * 1.76 - 1/2 * 4.9 * 1.76^2 = 15.1 m

H = V t - 1/2 g t^2 = 1.2 * 9.8 * 1.76^2 = 15.1 m

Time to fall from zero speed to ground = rise time = 1.76 sec

Vx = V cos 35 = 24.6 m / sec     horizontal speed

Time in air = 1.76 * 2 = 3.52 sec before returning to ground

S = 24.6 * 3.52 = 86.6 m

8 0
2 years ago
Which is likely to be more common in our Galaxy: white dwarfs or black holes? Why?
Nookie1986 [14]

Answer:

White dwarfs are likely to be much more common. The number of stars decreases with increasing mass, and only the most massive stars are likely to complete their lives as black holes. There are many more stars of the masses appropriate for evolution to a white dwarf.

4 0
2 years ago
Other questions:
  • Help me please in this
    9·1 answer
  • Calculate the heat energy needed to change the temperature of 2 kg of copper from 10°C to 110°C.
    14·2 answers
  • Describe the cyclic patterns of lunar phases and eclipses of the Sun and moon.
    8·1 answer
  • At what angle North of East must the ship travel to reach its destination? Let East be 0◦ and North 90◦.
    12·1 answer
  • 1. ¿Cuál es el aporte a la electrostática que se le atribuye a Thales de Mileto?
    7·1 answer
  • A typical reaction time to get your foot on the brake in your car is 0.2 second. If you are traveling at a speed of 60 mph (88 f
    8·2 answers
  • Which of the following is NOT a skill scientists use to learn about the world?
    13·1 answer
  • Statement that can be proven by observation or measurement is known as a(n):
    7·1 answer
  • All about Henry Mosléy?<br>​
    8·1 answer
  • 30
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!