Explanation:
Given that,
Wavelength of the light, 
Work function of sodium, 
The kinetic energy of the ejected electron in terms of work function is given by :

The formula of kinetic energy is given by :

Hence, this is the required solution.
Answer:
(1) Sure, the frequency is 1000 Hz.
Explanation:
Frequency = wave speed ÷ wave distance
wave speed = 100 m/s
wave distance = 10 cm = 10/100 = 0.1 m
Frequency = 100 ÷ 0.1 = 1000 Hz
Answer:
<em>0.97c</em>
<em></em>
Explanation:
From the relativistic equation for length contraction, we have
= 
where
is the final length of the object
is the original length of the object before contraction
β = 
where v is the speed of the object
c is the speed of light in free space = 3 x 10^8 m/s
The equation can be re-written as
/
= 
For the length to contract to one-fourth of the proper length, then
/
= 1/4
substituting into the equation, we'll have
1/4 = 
substituting for β, we'll have
1/4 = 
squaring both side of the equation, we'll have
1/16 = 1 - 
= 1 - 1/16
= 15/16
square root both sides of the equation, we have
v/c = 0.968
v = <em>0.97c</em>
Answer:
Energy transition therefore occurs due to the amount of kinetic energy gained by the electrons. The electrons with higher kinetic energy are excited to the higher level (excited state) compare to the electron with low kinetic energy (this energy are energy in the ground state)
Explanation:
Energy level transition occur when light rays strikes a metal surface to emit electron from the surface, a term known as photoelectric effect. This amount of electron emitted from the surface depends on the speed of light ray striking the metal surface.
Energy transition therefore occurs due to the amount of kinetic energy gained by the electrons. The electrons with higher kinetic energy are excited to the higher level (excited state) compare to the electron with low kinetic energy (this energy are energy in the ground state)