<u>Given:</u>
Mass of ice = mass of water = 5.50 kg = 5500 g
Temperature of ice = -20 C
Temperature of water = 75 C
<u>To determine:</u>
Mass of propane required
<u>Explanation:</u>
Heat required to change from ice to water under the specified conditions is:-
q = q(-20 C to 0 C) + q(fusion) + q (0 C to 75 C)
= m*c(ice)*ΔT(ice) + m*ΔHfusion + m*c(water)*ΔT(water)
= 5500[2.10(0-(-20)) + 334 + 4.18(75-0)] = 3792 kJ
The enthalpy change for the combustion of propane is -2220 kJ/mol
Therefore, the number of moles of propane corresponding to the required energy of 3792 kJ = 1 mole * 3792 kJ/2220 kJ = 1.708 moles of propane
Molar mass of propane = 44 g/mol
Mass of propane required = 1.708 moles * 44 g/mol = 75.15 g
Ans: 75.15 grams of propane must be combusted.
If’s chemistry it would be like this- Xe=1 and F=2/Xe=1 and F=6 so, to balance Xe=1 and F=[3x2]/Xe=1 and F=6.
Answer:
B
Explanation:
because it is being cooled down
hoped this helps
Here is the full question
Instant cold packs, often used to ice athletic injuries on the field, contain ammonium nitrate and water separated by a thin plastic divider. When the divider is broken, the ammonium nitrate dissolves according to the following endothermic reaction: NH4NO3(s)→NH+4(aq)+NO−3(aq) In order to measure the enthalpy change for this reaction, 1.25 g of NH4NO3 is dissolved in enough water to make 25.0 mL of solution. The initial temperature is 25.8 ∘C and the final temperature (after the solid dissolves) is 21.9 ∘C. Part A Calculate the change in enthalpy for the reaction in kilojoules per mole. (Use 1.0g/mL as the density of the solution and 4.18J/g⋅∘C as the specific heat capacity.) Express your answer to two significant figures and include the appropriate units. ΔHrxn = ??? kJ/mol
Answer:
26 kJ / mol
Explanation:
Given that;
The mass of NH₄NO₃ = 1.25 g
Number of moles of NH₄NO₃ = Mass of NH₄NO₃ / Molar Mass of NH₄NO₃
Number of moles of NH₄NO₃= 1.25 g / 80.043 g/mol
Number of moles of NH₄NO₃= 0.016 mol
Volume of solution = 25.0 mL
Density of Solution = 1.0g/mL
Since; 
Mass of Solution = Density x Volume
= 1.0g/mL × 25.0mL
= 25 g
Heat Generated (Q) = 
Q= 25g × 4.18 J/g°C x (25.8°C - 21.9°C)
Q = 407.55 J
Q = 407 × 10 ⁻³ kJ
Q = 0.40755 kJ
Δ
= 
= 
= 25.47 kJ/ mol
~ 26 kJ / mol
Therefore, the change in enthalpy for the reaction in kilojoules per mole = 26 kJ / mol
Answer:
A
Explanation:
B. That's a solid
C. Liquid is the only thing that can have viscosity
D. Not necessarily the case