Answer:
4,400,073
Step-by-step explanation:
Ez
Answer:
Just need points well I wish I was that smart
Answer:
The minimum value of f(x) is 2
Step-by-step explanation:
- To find the minimum value of the function f(x), you should find the value of x which has the minimum value of y, so we will use the differentiation to find it
- Differentiate f(x) with respect to x and equate it by 0 to find x, then substitute the value of x in f(x) to find the minimum value of f(x)
∵ f(x) = 2x² - 4x + 4
→ Find f'(x)
∵ f'(x) = 2(2)
- 4(1)
+ 0
∴ f'(x) = 4x - 4
→ Equate f'(x) by 0
∵ f'(x) = 0
∴ 4x - 4 = 0
→ Add 4 to both sides
∵ 4x - 4 + 4 = 0 + 4
∴ 4x = 4
→ Divide both sides by 4
∴ x = 1
→ The minimum value is f(1)
∵ f(1) = 2(1)² - 4(1) + 4
∴ f(1) = 2 - 4 + 4
∴ f(1) = 2
∴ The minimum value of f(x) is 2
The measure of a central angle is equal to measure of a minor arc. That makes m<GEH=17x+12. By the Vertical Angles Theorem, m<GEH and m<IEF are equal to each other (m<GEH=17x+12=m<IEF). By the same theorem, m<FEG and m<IEH are also equal (m<FEG=8x-7=m<IEH). The angles in a circle must all add up to 360 degrees, 2(17x+12)+2(8x-7)=360. Solve for x, then plug x into the equation for m<IEF.
Hope this helps!