Answer:
(x + 9)(x - 8)
Step-by-step explanation:
f(x) = x^2 + x - 72
= x^2 - 8x + 9x - 72
= (x^2 - 8x) + (9x - 72)
= x(x - 8) + 9(x - 8)
= (x + 9)(x - 8)
The first thing we must do in this case is find the derivatives:
y = a sin (x) + b cos (x)
y '= a cos (x) - b sin (x)
y '' = -a sin (x) - b cos (x)
Substituting the values:
(-a sin (x) - b cos (x)) + (a cos (x) - b sin (x)) - 7 (a sin (x) + b cos (x)) = sin (x)
We rewrite:
(-a sin (x) - b cos (x)) + (a cos (x) - b sin (x)) - 7 (a sin (x) + b cos (x)) = sin (x)
sin (x) * (- a-b-7a) + cos (x) * (- b + a-7b) = sin (x)
sin (x) * (- b-8a) + cos (x) * (a-8b) = sin (x)
From here we get the system:
-b-8a = 1
a-8b = 0
Whose solution is:
a = -8 / 65
b = -1 / 65
Answer:
constants a and b are:
a = -8 / 65
b = -1 / 65
Answer:
130
Step-by-step explanation:
Answer:
answer C
Step-by-step explanation:
I think it is A but I'm not really sure