Answer:
it equals to 1032000
Step-by-step explanation:
because 3000 x 344 = 1032000
Start with assigning each person with a variable to represent their height
Ebi: e
Jose: j
Derell: d
Asami: a
Ebi'd height was 2.5 cm greater than Jose's height
j + 2.5 = e
Jose's height was 3.1 cm greater than Derell's
d + 3.1 = j
Derell's height is 0.4 cm less than Asami's height
a - 0.4 = d
Ebi is 162.5 cm tall
e = 162.5
So, plug in 162.5 into any of the above equations were there is a variable of e
j + 2.5 = e
j + 2.5 = 162.5
Subtract 2.5 from both sides of the equation
j = 160 cm
Jose's height is 160 cm
Now, plug in 160 into any of the above equations where there is a j
d + 3.1 = j
d + 3.1 = 160
Subtract 3.1 from both sides of the equation
d = 156.9 cm
Derell's height 156.9 cm
so, plug in 156.9 into any of the above equations where there is a d
a - 0.4 = d
a - 0.4 = 156.9
Add 0.4 on both sides of the equation
a = 157.3 cm
Asami's height is 157.3 cm
answer: Subtract sixteen from both sides of the equation
2 +16 -16=22x -16
x = 4/5
Properties of equality have nothing to do with it. The associative and commutative properties of multiplication are used (along with the distributive property and the fact of arithmetic: 9 = 10 - 1).
All of these problems make use of the strategy, "look at what you have before you start work."
1. = (4·5)·(-3) = 20·(-3) = -60 . . . . if you know factors of 60, you can do this any way you like. It is convenient to ignore the sign until the final result.
2. = (2.25·4)·23 = 9·23 = 23·10 -23 = 230 -23 = 207 . . . . multiplication by 4 can clear the fraction in 2 1/4, so we choose to do that first. Multiplication by 9 can be done with a subtraction that is often easier than using ×9 facts.
4. = (2·5)·12·(-1) = 10·12·(-1) = (-1)·120 = -120 . . . . multiplying by 10 is about the easiest, so it is convenient to identify the factors of 10 and use them first. Again, it is convenient to ignore the sign until the end.
5. = 0 . . . . when a factor is zero, the product is zero
All real numbers greater than or equal to 1