1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vikentia [17]
3 years ago
14

Suppose y varies directly with x and y = 14 when x = -4 what is the value of t when x = -6

Mathematics
2 answers:
Leto [7]3 years ago
4 0
The answer would actually be 21. Not negative 21. Hope this helps!
Alex777 [14]3 years ago
4 0

Answer: Direct Variations Quick check

D. 21

C.201.6

B.3/4

A.1/4

B.200

Step-by-step explanation:

You might be interested in
3/4 * 8 WITH EXPLANATION PLEASE<br> I WILL MARK YOU BRAINLIEST
Svet_ta [14]

Answer:

6

Step-by-step explanation:

3/4 * 8 is really easy but.....

you multiply the 3/4 * 8/1 (numerators and denominators) 3*8/4*1 = 24/4 = 6.

5 0
3 years ago
Read 2 more answers
What is the inverse of the function f(x) = 2x + 1?
BaLLatris [955]

Answer:

f^{-1} = \frac{x-1}{2}

Step-by-step explanation:

f(x) = 2x+1

<em>Replace it with y</em>

y = 2x+1

<em>Exchange the values of  x and y</em>

x = 2y+1

<em>Solve for y</em>

x = 2y+1

<em>Subtracting 1 from both sides</em>

2y = x-1

<em>Dividing both sides by 2</em>

y = \frac{x-1}{2}

<em>Replace it by </em>f^{-1}

So,

f^{-1} = \frac{x-1}{2}

3 0
3 years ago
Read 2 more answers
HELP URGENT BRAINLIEST
nadya68 [22]

Given:

LMN is an equilateral triangle.

LM = LN = MN = 12 cm

To find:

The height of the triangle h.

Solution:

In a right angle triangle,

\sin \theta=\dfrac{Opposite}{Hypotenuse}

\sin (60^\circ)=\dfrac{h}{12}

\dfrac{\sqrt{3}}{2}=\dfrac{h}{12}

Multiply both sides by 12.

\dfrac{\sqrt{3}}{2}\times 12=\dfrac{h}{12}\times 12

6\sqrt{3}=h

Therefore, the height of the triangle is 6\sqrt{3} cm.

3 0
2 years ago
|. Identify the following Pōints of each values.Write your ans
Dmitry_Shevchenko [17]
<h2>✒️VALUE</h2>

\\ \quad  \begin{array}{c} \qquad \bold{Distance \: \green{ Formula:}}\qquad\\ \\ \boldsymbol{ \tt d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \end{array}\\  \begin{array}{l} \\ 1.)\: \bold{Given:}\: \begin{cases}\tt D(- 5,6), E(2.-1),\textsf{ and }F(x,0) \\ \tt DF = EF \end{cases} \\ \\  \qquad\bold{Required:}\:\textsf{ value of }x \\ \\ \qquad \textsf{Solving for }x, \\ \\  \tt  \qquad DF = EF \\ \\  \implies\small \tt{\sqrt{(x -(- 5))^2 + (0 - 6)^2} = \sqrt{(x - 2)^2 + (0 - (-1))^2}} \\ \\   \implies\tt\sqrt{(x + 5)^2 + 36 } = \sqrt{(x - 2)^2 + 1 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies\tt (x + 5)^2 + 36 = (x - 2)^2 + 1 \\ \\  \implies\tt x^2 + 10x + 25 + 36 = x^2 - 4x + 4 + 1 \\ \\ \implies \tt x^2 + 10x + 61 = x^2 - 4x + 5 \\ \\   \implies\tt10x + 4x = 5 - 61 \\ \\   \implies\tt14x = -56 \\ \\  \implies \red{\boxed{\tt x = -4}}\end{array}  \\  \\  \\  \\\begin{array}{l} \\ 2.)\: \bold{Given:}\: \begin{cases}\tt P(6,-1), Q(-4,-3),\textsf{ and }R(0,y) \\ \tt PR = QR \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }y \\ \\  \qquad\textsf{Solving for }y, \\ \\  \qquad\tt PR = QR \\ \\  \implies \tt\small{\sqrt{(0 - 6)^2 + (y - (-1))^2} = \sqrt{(0 - (-4))^2 + (y - (-3))^2}} \\ \\   \implies\tt\sqrt{36 + (y + 1)^2} = \sqrt{16 + (y + 3)^2 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies \tt \: 36 + (y + 1)^2 = 16 + (y + 3)^2 \\ \\  \implies\tt 36 + y^2 + 2y + 1 = 16 + y^2 + 6y + 9 \\ \\  \implies \tt \: y^2 + 2y + 37 = y^2 + 6y + 25 \\ \\  \implies \tt \: 2y - 6y = 25 - 37 \\ \\ \implies \tt -4y = -12 \\ \\   \implies\red{\boxed{ \tt y = 3}} \end{array}  \\  \\  \\ \begin{array}{l} \\ 3.)\: \bold{Given:}\: \begin{cases}\: A(4,5), B(-3,2),\textsf{ and }C(x,0) \\ \: AC = BC \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }x \\ \\  \qquad\textsf{Solving for }x, \\ \\   \qquad\tt AC = BC \\ \\ \implies\tt\small{\sqrt{(x - 4)^2 + (0 - 5)^2} = \sqrt{(x - (-3))^2 + (0 - 2)^2}} \\ \\ \implies\tt\sqrt{(x - 4)^2 + 25} = \sqrt{(x + 3)^2 + 4} \\ \\ \textsf{Squaring both sides yields} \\ \\ \implies\tt\:(x - 4)^2 + 25 = (x + 3)^2 + 4 \\ \\ \implies\tt\:x^2 - 8x + 16 + 25 = x^2 + 6x + 9 + 4 \\ \\ \implies\tt\:x^2 - 8x + 41 = x^2 + 6x + 13 \\ \\ \implies\tt-8x - 6x = 13 - 41 \\ \\\implies\tt -14x = -28 \\ \\ \implies\red{\boxed{\tt\:x = 2}} \end{array}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

7 0
2 years ago
The. Ordered pair? <br><br> Is this a function yes or no?
White raven [17]
Yes. It is a function I don’t know why but I know it is
4 0
3 years ago
Other questions:
  • The solid shown is constructed from a cylinder and two hemispheres with dimensions as shown. Find the volume of this solid to th
    12·1 answer
  • If f(x)=2x^2 +4 and g(x)=x-3,which number satisfies f(x)=(f•g) (x)
    10·1 answer
  • Weekend Curfews
    11·2 answers
  • ah i only need to know if its AND or OR! i already have the graphing done, if you could, please explain how you got AND/OR! than
    7·1 answer
  • A tank contains 120 liters of fluid in which 50 grams of salt is dissolved. Brine containing 1 gram of salt per liter is then pu
    5·1 answer
  • Given that ∠MQL = 180° and ∠XQR = 180°, which equation could be used to solve problems involving the relationships between ∠XQL
    7·2 answers
  • What is the value of k?
    7·1 answer
  • Plz help ill rate you
    8·1 answer
  • Find the length segment of XZ if the line segment of YU=30 and segment XU=50
    10·1 answer
  • Troy is going to spain and needs to convert his dollars to Euros. He knows that when he goes, $5.00 is equivalent to about 3.45
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!