Explanation:
The given data is as follows.
Current (I) = 3.50 amp, Mass deposited = 100.0 g
Molar mass of Cr = 52 g
It is known that 1 faraday of electricity will deposit 1 mole of chromium. As 1 faraday means 96500 C and 1 mole of Cr means 52 g.
Therefore, 100 g of Cr will be deposited by "z" grams of electricity.

z = 
= 185576.9 C
As we know that, Q = I × t
Hence, putting the given values into the above equation as follows.
Q = I × t
185576.9 C =
t = 53021.9 sec
Thus, we can conclude that 100 g of Cr will be deposited in 53021.9 sec.
Answer:
P.E = 25.48 J
Explanation:
Given data:
Mass = 2 Kg
Height = 1.3 m
Potential energy = ?
Solution:
Formula:
P.E = m . g . h
P. E = potential energy
m = mass in kilogram
g = acceleration due to gravity
h = height
Now we will put the values in formula.
P.E = m . g . h
P.E = 2 Kg . 9.8 m /s² . 1.3 m
P.E = 25.48 Kg. m² / s²
Kg. m² / s² = J
P.E = 25.48 J
<span>The coyote (Canis latrans) and the gray wolf (Canis lupus) are the most similar species in the table.</span>
Answer:
1. HBr>HCl> H2S >BH3
2.K_a1 very large — H2SO4
K_a1= 1.7 x 10^−2 — H2SO3
K_a1 = 1.7 x 10^−7 — H2S
Explanation:
As one goes down a row in the Periodic Table the properties that determine the acid strength can be observed.
The atoms get larger in radius meaning that in strength, the strength of the bonds get weaker, conversely meaning that the acids get stronger.
For the halogen-containing acids above following the rows and periods, HBr has the strongest bond and is the strongest acid and others follow in this order.
HBr>HCl> H2S >BH3
Acid Dissociation Constant provides us with information known as the ionization constant which comes in handy to measure the acid's strength. The meaning of the proportions are thus, the higher the Ka value, the stronger the acid i.e. it liberates more number of hydrogen ions per mole of acid in solution.
In solution strong acids completely dissociate hence, the value of dissociation constant of strong acids is very high.
Following the cues above on Ka;
K_a1 very large — H2SO4
K_a1= 1.7 x 10^−2 — H2SO3
K_a1 = 1.7 x 10^−7 — H2S