Equation a. C3H8(g) + O2(g) → CO2(g) + H2O(g) + 2220 kj
is endothermic. + 2220 kj
Equation b. 2 Na(s) + Cl2(g) → 2 NaCl(s) + 819kJ
is also endothermic since the overall energy change is positive. + 819kJ
The equation c. PCl5(g) + 67kj → PCl3(g) + Cl2(g) is endothermic since it requires anergy to proceed.
Don't really know if this is what your asking but P1/T1= P2/T2 should show how the pressure varies with temperature (V is left out because it's constant since the gas is trapped in an aerosol can). As the temperature rises the pressure rises and if it gets too high then the can explodes, which is why it should be stored in a cool place. There's also PV=nRT might be kind of hard to find moles (n) though.
<span>The action that researchers take to make advances in science would be conducting experiments to test their hypothesis. By doing such, they are able to know whether the hypothesis is true or not. Hope this answers the question. Have a nice day.</span>
Thermodynamic quantity equivalent to the total heat content of a system It is equal to the internal energy of the system plus the product of pressure and volume
The products will be magnesium phosphate and potassium chloride. You then have to watch a solubility chart to see which one of these is not soluable. In this case it is magnesium phosphate.