1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew11 [14]
3 years ago
7

Graph the circle (2x - 3)2 + (y + 3)2 =36

Mathematics
2 answers:
raketka [301]3 years ago
7 0

Answer:

\mathrm{Ellipse\:with\:center}\:\left(h,\:k\right)=\left(\frac{3}{2},\:-3\right),\:\:\mathrm{semi-major\:axis}\:b=6,\:\:\mathrm{semi-minor\:axis}\:a=3

Step-by-step explanation:

\left(2x-3\right)^2+\left(y+3\right)^2=36\\\frac{\left(x-h\right)^2}{a^2}+\frac{\left(y-k\right)^2}{b^2}=1\:\mathrm{is\:the\:ellipse\:standard\:equation}\\\mathrm{with\:center}\:\left(h,\:k\right)\:\mathrm{and\:}a,\:b\mathrm{\:are\:the\:semi-major\:and\:semi-minor\:axes}\\\mathrm{Rewrite}\:\left(2x-3\right)^2+\left(y+3\right)^2=36\:\mathrm{in\:the\:form\:of\:the\:standard\:ellipse\:equation}\\\left(2x-3\right)^2+\left(y+3\right)^2=36\\\mathrm{Rewrite\:as}\\\left(2x-3\right)^2+\left(y+3\right)^2-36=0

\mathrm{Simplify}\:\left(2x-3\right)^2+\left(y+3\right)^2-36:\quad 4x^2-12x+y^2+6y-18\\4x^2-12x+y^2+6y-18=0\\\mathrm{Add\:}18\mathrm{\:to\:both\:sides}\\4x^2-12x+y^2+6y=18\\Factor\:out\:coefficient\:of\:square\:terms\\4\left(x^2-3x\right)+\left(y^2+6y\right)=18\\\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}4\\\left(x^2-3x\right)+\frac{1}{4}\left(y^2+6y\right)=\frac{9}{2}\\\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}1

\frac{1}{1}\left(x^2-3x\right)+\frac{1}{4}\left(y^2+6y\right)=\frac{9}{2}\\\mathrm{Convert}\:x\:\mathrm{to\:square\:form}\\\frac{1}{1}\left(x^2-3x+\frac{9}{4}\right)+\frac{1}{4}\left(y^2+6y\right)=\frac{9}{2}+\frac{1}{1}\left(\frac{9}{4}\right)\\\mathrm{Convert\:to\:square\:form}\\\frac{1}{1}\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\left(y^2+6y\right)=\frac{9}{2}+\frac{1}{1}\left(\frac{9}{4}\right)\\\mathrm{Convert}\:y\:\mathrm{to\:square\:form}

\frac{1}{1}\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\left(y^2+6y+9\right)=\frac{9}{2}+\frac{1}{1}\left(\frac{9}{4}\right)+\frac{1}{4}\left(9\right)\\\mathrm{Convert\:to\:square\:form}\\\frac{1}{1}\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\left(y+3\right)^2=\frac{9}{2}+\frac{1}{1}\left(\frac{9}{4}\right)+\frac{1}{4}\left(9\right)\\\mathrm{Refine\:}\frac{9}{2}+\frac{1}{1}\left(\frac{9}{4}\right)+\frac{1}{4}\left(9\right)\\\frac{1}{1}\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\left(y+3\right)^2=9

\mathrm{Divide\:by}\:9\\\frac{\left(x-\frac{3}{2}\right)^2}{9}+\frac{\left(y+3\right)^2}{36}=1\\\mathrm{Rewrite\:in\:standard\:form}\\\frac{\left(x-\frac{3}{2}\right)^2}{3^2}+\frac{\left(y-\left(-3\right)\right)^2}{6^2}=1\\\mathrm{Therefore\:ellipse\:properties\:are:}\\\left(h,\:k\right)=\left(\frac{3}{2},\:-3\right),\:a=3,\:b=6\\b>a\:\mathrm{therefore}\:b\:\mathrm{is\:semi-major\:axis\:and}\:a\:\mathrm{is\:semi-minor\:axis}

\mathrm{Ellipse\:with\:center}\:\left(h,\:k\right)=\left(\frac{3}{2},\:-3\right),\:\:\mathrm{semi-major\:axis}\:b=6,\:\:\mathrm{semi-minor\:axis}\:a=3

Ludmilka [50]3 years ago
5 0

Answer: 9 on the x axis  and 18 on the y axis

You might be interested in
Write the slope-intercept form of the equation of the line that is parallel to and passes through Point X. Show all work for ful
ycow [4]
Y=1/2x+4 this is the way I was taught let me know if It makes since to you

5 0
3 years ago
Read 2 more answers
What is the area of the figure?<br><br><br><br> 20 m2<br> 24 m2<br> 32 m2<br> can't be determined
nikdorinn [45]
I think the answer is 32m2
Hope this helps
4 0
2 years ago
Read 2 more answers
Pls help :((((((((((
Dominik [7]

Answer:Fuction c

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Which of the following is equivalent to the complex number i^5
ELEN [110]

Answer:

i

Step-by-step explanation:

i = \sqrt{-1} ⇒ i² = (\sqrt{-1} )² = - 1 , then

i^{5}

= i² × i² × i

= - 1 × - 1 ×i

= 1 × i

= i

5 0
2 years ago
Give a third degree polynomial that has zeros of 13, 5i, and −5i, and has a value of −680 when x=3. Write the polynomial in stan
Vikki [24]

Answer:

\dfrac{17x^3-221x^2+425x-5525}{9}\\

Step-by-step explanation:

hello

we need to find something like, a being real

a(x-13)(x-5i)(x+5i)

with a so that

a(3-13)(3-5i)(3+5i)=-680\\\\a(-10)(3^2-(5i)^2)= -10(9+25)a=-360a=-680\\ a = \dfrac{680}{360}=\dfrac{17*40}{9*40}=\dfrac{17}{9}

so the third degree polynomial that we are looking for is

\dfrac{17}{9}(x-13)(x-5i)(x+5i)\\=\dfrac{17}{9}(x-13)(x^2+25)\\\\=\dfrac{17}{9}(x^3+25x-13x^2-13*25)\\\\\\=\dfrac{17}{9}(x^3-13x^2+25x-325)\\\\\\\\=\dfrac{17}{9}x^3-\dfrac{17*13}{9}x^2+\dfrac{17*25}{9}x-\dfrac{17*325}{9}\\=\dfrac{17}{9}x^3-\dfrac{221}{9}x^2+\dfrac{425}{9}x-\dfrac{5525}{9}\\

hope this helps

3 0
3 years ago
Other questions:
  • Can someone plz help me
    9·1 answer
  • Which two hundred thousands is 391,360 between?
    8·1 answer
  • A student wanted to find the sum of all the even numbers from 1 to 100. He said:
    12·1 answer
  • Given the point (-7, 9), what would the coordinates be after that point was translated 4 units up? ( _ , _ )
    15·2 answers
  • What is the rectangle's height and base?
    6·2 answers
  • The 16 oz jar of Peanut Butter costs $4.82. What is the cost per oz?
    10·1 answer
  • Solve the equation for x.<br> -=7<br> Answer here
    15·1 answer
  • Tony is a salesperson who earns $560 per week plus $60 for each sale he makes. This week, he wants to earn at least $920. Write
    15·1 answer
  • Que pasa si un objeto imparable choca con uno inabobible​
    13·2 answers
  • At a bargain store, Beast Boy bought 5 items that each cost the same amount. Cyborg bought 8 items that
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!