1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew11 [14]
3 years ago
7

Graph the circle (2x - 3)2 + (y + 3)2 =36

Mathematics
2 answers:
raketka [301]3 years ago
7 0

Answer:

\mathrm{Ellipse\:with\:center}\:\left(h,\:k\right)=\left(\frac{3}{2},\:-3\right),\:\:\mathrm{semi-major\:axis}\:b=6,\:\:\mathrm{semi-minor\:axis}\:a=3

Step-by-step explanation:

\left(2x-3\right)^2+\left(y+3\right)^2=36\\\frac{\left(x-h\right)^2}{a^2}+\frac{\left(y-k\right)^2}{b^2}=1\:\mathrm{is\:the\:ellipse\:standard\:equation}\\\mathrm{with\:center}\:\left(h,\:k\right)\:\mathrm{and\:}a,\:b\mathrm{\:are\:the\:semi-major\:and\:semi-minor\:axes}\\\mathrm{Rewrite}\:\left(2x-3\right)^2+\left(y+3\right)^2=36\:\mathrm{in\:the\:form\:of\:the\:standard\:ellipse\:equation}\\\left(2x-3\right)^2+\left(y+3\right)^2=36\\\mathrm{Rewrite\:as}\\\left(2x-3\right)^2+\left(y+3\right)^2-36=0

\mathrm{Simplify}\:\left(2x-3\right)^2+\left(y+3\right)^2-36:\quad 4x^2-12x+y^2+6y-18\\4x^2-12x+y^2+6y-18=0\\\mathrm{Add\:}18\mathrm{\:to\:both\:sides}\\4x^2-12x+y^2+6y=18\\Factor\:out\:coefficient\:of\:square\:terms\\4\left(x^2-3x\right)+\left(y^2+6y\right)=18\\\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}4\\\left(x^2-3x\right)+\frac{1}{4}\left(y^2+6y\right)=\frac{9}{2}\\\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}1

\frac{1}{1}\left(x^2-3x\right)+\frac{1}{4}\left(y^2+6y\right)=\frac{9}{2}\\\mathrm{Convert}\:x\:\mathrm{to\:square\:form}\\\frac{1}{1}\left(x^2-3x+\frac{9}{4}\right)+\frac{1}{4}\left(y^2+6y\right)=\frac{9}{2}+\frac{1}{1}\left(\frac{9}{4}\right)\\\mathrm{Convert\:to\:square\:form}\\\frac{1}{1}\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\left(y^2+6y\right)=\frac{9}{2}+\frac{1}{1}\left(\frac{9}{4}\right)\\\mathrm{Convert}\:y\:\mathrm{to\:square\:form}

\frac{1}{1}\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\left(y^2+6y+9\right)=\frac{9}{2}+\frac{1}{1}\left(\frac{9}{4}\right)+\frac{1}{4}\left(9\right)\\\mathrm{Convert\:to\:square\:form}\\\frac{1}{1}\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\left(y+3\right)^2=\frac{9}{2}+\frac{1}{1}\left(\frac{9}{4}\right)+\frac{1}{4}\left(9\right)\\\mathrm{Refine\:}\frac{9}{2}+\frac{1}{1}\left(\frac{9}{4}\right)+\frac{1}{4}\left(9\right)\\\frac{1}{1}\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\left(y+3\right)^2=9

\mathrm{Divide\:by}\:9\\\frac{\left(x-\frac{3}{2}\right)^2}{9}+\frac{\left(y+3\right)^2}{36}=1\\\mathrm{Rewrite\:in\:standard\:form}\\\frac{\left(x-\frac{3}{2}\right)^2}{3^2}+\frac{\left(y-\left(-3\right)\right)^2}{6^2}=1\\\mathrm{Therefore\:ellipse\:properties\:are:}\\\left(h,\:k\right)=\left(\frac{3}{2},\:-3\right),\:a=3,\:b=6\\b>a\:\mathrm{therefore}\:b\:\mathrm{is\:semi-major\:axis\:and}\:a\:\mathrm{is\:semi-minor\:axis}

\mathrm{Ellipse\:with\:center}\:\left(h,\:k\right)=\left(\frac{3}{2},\:-3\right),\:\:\mathrm{semi-major\:axis}\:b=6,\:\:\mathrm{semi-minor\:axis}\:a=3

Ludmilka [50]3 years ago
5 0

Answer: 9 on the x axis  and 18 on the y axis

You might be interested in
Ricky is playing a racing game on PS5.
stepan [7]

Answer:

192 points

Step-by-step explanation:

he earned 120 points for passing 6 levels and getting 20 points per level

he earned 72 points for racing 45 laps and getting 24 points per every 15 laps

8 0
3 years ago
A person participates in a weekly office pool in which he has one chance in ten of winning the prize. If he participates for 5 w
Molodets [167]

Answer: 2

Step-by-step explanation:

5 0
3 years ago
Point C is on line segment \overline{BD} BD . Given CD=x,CD=x, BC=5x-5,BC=5x−5, and BD=2x+7,BD=2x+7, determine the numerical len
NARA [144]

Answer:

CD = 3

Step-by-step explanation:

Given

CD = x

BC = 5x - 5

BD = 2x + 7

Required

Determine CD

Since, C is a point on BD, the relationship between the given parameters is;

BD = BC + CD

Substitute the values of BD, BC and CD

2x + 7 = 5x - 5 + x

Collect Like Terms

2x - 5x - x = -5 - 7

-4x = -12

Divide both sides by -4

\frac{-4x}{-4} = \frac{-12}{-4}

x = 3

To determine the length of CD;

Substitute 3 for x in CD = x

Hence;

CD = 3

3 0
3 years ago
Determine the vertex- f( x)= x^2 +4x +3<br><br> (2,-1)<br> (-2, -1)<br> (-3, -1)<br> (-1, -2)
Grace [21]

The answer is ( -2 , -1 ) .

Hope it's helped ♥️♥️♥️♥️♥️.

8 0
3 years ago
Harrison rode his bike 6/10 Of a mile to the park shade the model then write 6/10 as a decimal to show how far Harrison rode his
alexira [117]
6/10 as a decimal would be 0.6
4 0
3 years ago
Other questions:
  • What decimal is equilvalent to 3/8
    10·2 answers
  • Do even numbers have more factors in odd numbers or do i numbers have more factors than even numbers
    11·1 answer
  • Evaluate 5|x^3 - 2| + 7 when x = -2
    11·2 answers
  • An $80.00 coat is marked down 20%. It does not sell, so the shop owner marks it down an additional 15%. What is the new price of
    7·1 answer
  • 12 less than the quotient of 12 and a number x
    12·1 answer
  • What does this mean?:<br> How does the data vary?<br> What is the mode?
    12·1 answer
  • What is the sum of two solutions of the quadratic equation ax^2+bx+c=0
    8·2 answers
  • Function limits: Solve the activities in each image (full development)
    15·2 answers
  • Find the value show your work <br><br>(-4^2)+5)(-4^2)-(-4)+2)-3​
    10·2 answers
  • Type a digit that makes this statement true.<br> 7,176,260 is divisible by 3.<br> Submit
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!