1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew11 [14]
2 years ago
7

Graph the circle (2x - 3)2 + (y + 3)2 =36

Mathematics
2 answers:
raketka [301]2 years ago
7 0

Answer:

\mathrm{Ellipse\:with\:center}\:\left(h,\:k\right)=\left(\frac{3}{2},\:-3\right),\:\:\mathrm{semi-major\:axis}\:b=6,\:\:\mathrm{semi-minor\:axis}\:a=3

Step-by-step explanation:

\left(2x-3\right)^2+\left(y+3\right)^2=36\\\frac{\left(x-h\right)^2}{a^2}+\frac{\left(y-k\right)^2}{b^2}=1\:\mathrm{is\:the\:ellipse\:standard\:equation}\\\mathrm{with\:center}\:\left(h,\:k\right)\:\mathrm{and\:}a,\:b\mathrm{\:are\:the\:semi-major\:and\:semi-minor\:axes}\\\mathrm{Rewrite}\:\left(2x-3\right)^2+\left(y+3\right)^2=36\:\mathrm{in\:the\:form\:of\:the\:standard\:ellipse\:equation}\\\left(2x-3\right)^2+\left(y+3\right)^2=36\\\mathrm{Rewrite\:as}\\\left(2x-3\right)^2+\left(y+3\right)^2-36=0

\mathrm{Simplify}\:\left(2x-3\right)^2+\left(y+3\right)^2-36:\quad 4x^2-12x+y^2+6y-18\\4x^2-12x+y^2+6y-18=0\\\mathrm{Add\:}18\mathrm{\:to\:both\:sides}\\4x^2-12x+y^2+6y=18\\Factor\:out\:coefficient\:of\:square\:terms\\4\left(x^2-3x\right)+\left(y^2+6y\right)=18\\\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}4\\\left(x^2-3x\right)+\frac{1}{4}\left(y^2+6y\right)=\frac{9}{2}\\\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}1

\frac{1}{1}\left(x^2-3x\right)+\frac{1}{4}\left(y^2+6y\right)=\frac{9}{2}\\\mathrm{Convert}\:x\:\mathrm{to\:square\:form}\\\frac{1}{1}\left(x^2-3x+\frac{9}{4}\right)+\frac{1}{4}\left(y^2+6y\right)=\frac{9}{2}+\frac{1}{1}\left(\frac{9}{4}\right)\\\mathrm{Convert\:to\:square\:form}\\\frac{1}{1}\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\left(y^2+6y\right)=\frac{9}{2}+\frac{1}{1}\left(\frac{9}{4}\right)\\\mathrm{Convert}\:y\:\mathrm{to\:square\:form}

\frac{1}{1}\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\left(y^2+6y+9\right)=\frac{9}{2}+\frac{1}{1}\left(\frac{9}{4}\right)+\frac{1}{4}\left(9\right)\\\mathrm{Convert\:to\:square\:form}\\\frac{1}{1}\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\left(y+3\right)^2=\frac{9}{2}+\frac{1}{1}\left(\frac{9}{4}\right)+\frac{1}{4}\left(9\right)\\\mathrm{Refine\:}\frac{9}{2}+\frac{1}{1}\left(\frac{9}{4}\right)+\frac{1}{4}\left(9\right)\\\frac{1}{1}\left(x-\frac{3}{2}\right)^2+\frac{1}{4}\left(y+3\right)^2=9

\mathrm{Divide\:by}\:9\\\frac{\left(x-\frac{3}{2}\right)^2}{9}+\frac{\left(y+3\right)^2}{36}=1\\\mathrm{Rewrite\:in\:standard\:form}\\\frac{\left(x-\frac{3}{2}\right)^2}{3^2}+\frac{\left(y-\left(-3\right)\right)^2}{6^2}=1\\\mathrm{Therefore\:ellipse\:properties\:are:}\\\left(h,\:k\right)=\left(\frac{3}{2},\:-3\right),\:a=3,\:b=6\\b>a\:\mathrm{therefore}\:b\:\mathrm{is\:semi-major\:axis\:and}\:a\:\mathrm{is\:semi-minor\:axis}

\mathrm{Ellipse\:with\:center}\:\left(h,\:k\right)=\left(\frac{3}{2},\:-3\right),\:\:\mathrm{semi-major\:axis}\:b=6,\:\:\mathrm{semi-minor\:axis}\:a=3

Ludmilka [50]2 years ago
5 0

Answer: 9 on the x axis  and 18 on the y axis

You might be interested in
What is the 6th term of the geometric sequence<br> 50, 10, 2, ...?
Dominik [7]

Answer:

your answer to that would be 5 other Geographic Square

7 0
2 years ago
Find the quotient show work please
Papessa [141]
5/68 5 can go into 68 13 times with a remainder of 3 So we add a decimal point and a zero. Carry the 3 and zero down making 30 5 can go into 30 6 times making the answer 13.6
3 0
3 years ago
Write an algebraic expression for the phrase five less than the product of six and N
GenaCL600 [577]

Answer:

6N - 5

Step-by-step explanation:

five less than the product of six and N: <em>6N</em>

five less than the product of six and N: <em>6N </em><em>- 5</em>

Answer: 6N - 5

6 0
3 years ago
Which are perfect squares? Check all that apply.
den301095 [7]
36, 16, 81, and 64 are all of your perfect squares.

If you need me to explain, just let me know! :)
6 0
3 years ago
Read 2 more answers
Oil is pumped continuously from a well at a rate proportional to the amount of oil left in the well. Initially there were millio
JulijaS [17]

Answer:

The amount of oil was decreasing at 69300 barrels, yearly

Step-by-step explanation:

Given

Initial =1\ million

6\ years\ later = 500,000

Required

At what rate did oil decrease when 600000 barrels remain

To do this, we make use of the following notations

t = Time

A = Amount left in the well

So:

\frac{dA}{dt} = kA

Where k represents the constant of proportionality

\frac{dA}{dt} = kA

Multiply both sides by dt/A

\frac{dA}{dt} * \frac{dt}{A} = kA * \frac{dt}{A}

\frac{dA}{A}  = k\ dt

Integrate both sides

\int\ {\frac{dA}{A}  = \int\ {k\ dt}

ln\ A = kt + lnC

Make A, the subject

A = Ce^{kt}

t = 0\ when\ A =1\ million i.e. At initial

So, we have:

A = Ce^{kt}

1000000 = Ce^{k*0}

1000000 = Ce^{0}

1000000 = C*1

1000000 = C

C =1000000

Substitute C =1000000 in A = Ce^{kt}

A = 1000000e^{kt}

To solve for k;

6\ years\ later = 500,000

i.e.

t = 6\ A = 500000

So:

500000= 1000000e^{k*6}

Divide both sides by 1000000

0.5= e^{k*6}

Take natural logarithm (ln) of both sides

ln(0.5) = ln(e^{k*6})

ln(0.5) = k*6

Solve for k

k = \frac{ln(0.5)}{6}

k = \frac{-0.693}{6}

k = -0.1155

Recall that:

\frac{dA}{dt} = kA

Where

\frac{dA}{dt} = Rate

So, when

A = 600000

The rate is:

\frac{dA}{dt} = -0.1155 * 600000

\frac{dA}{dt} = -69300

<em>Hence, the amount of oil was decreasing at 69300 barrels, yearly</em>

7 0
2 years ago
Other questions:
  • 8,765,432 A. what number is in the tens place? B. what number us in the hundred thousand place?
    9·1 answer
  • Solve by completing the square<br>3x2 + x - 2 = 0​
    9·1 answer
  • Please help me with this question !!!!
    8·1 answer
  • What’s 1 minus 38828? For y’all
    10·1 answer
  • What is the volume of this sphere?
    15·1 answer
  • Find the measure of angle 1 and 2 pls​
    5·1 answer
  • 24=×+7? ayudenme plis xd<br>​
    8·2 answers
  • si la longitud de la escalera es de 10 m y la distancia de la base de apoyo a la pared es de 6m cual es la longitud de la pared​
    12·1 answer
  • Buying a 30 dollar shirt for $30 and getting a second shirt of equal value for 50%off
    8·2 answers
  • What are the coordinates of the point on the directed line segment from (1,-5) to
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!