Answer:
Tension= (g=acceleration of gravity)
Explanation:
Given that,
A 5Kg and 10Kg are attached by a cable suspended over a pulley.
As 10Kg > 5Kg , the 10 kg mass accelerates down and the 5kg mass accelerates up, let it be a. Let the tension in the cable be T.
So, the equations of motion are
Now adding them we get,
Substituting them back in the equation we get,
Answer:
Examples of Newton's third law of motion are ubiquitous in everyday life. For example, when you jump, your legs apply a force to the ground, and the ground applies and equal and opposite reaction force that propels you into the air. Engineers apply Newton's third law when designing rockets and other projectile devices.
Answer: B
Explanation:
Given that an object of mass 2 kg starts from rest and is allowed to slide down a frictionless incline so that its height changes by 20 m.
The parameters given from the question are:
Mass M = 2kg
Height h = 20m
Let g = 9.8m/s^2
At the bottom of the incline plane, the object will experience maximum kinetic energy.
From conservative of energy, maximum K.K.E = maximum P.E
Maximum P.E = mgh
Maximum P.E = 2 × 9.8 × 20 = 392 J
But
K.E = 1/2mv^2
Substitute the values of energy and mass into the formula
392 = 1/2 × 2 × V^2
V^2 = 392
V = sqrt( 392 )
V = 19.8 m/s
V = 20 m/s approximately
Answer:
The normal resting heart rate for adults over the age of 10 years, including older adults, is between 60 and 100 beats per minute (bpm). Highly trained athletes may have a resting heart rate below 60 bpm, sometimes reaching 40 bpm. The resting heart rate can vary within this normal range.
Explanation:
I hope that answers your question!