Answer:
Element Chart
Explanation:
It is a chart that provides many different elements.
Answer:
All the given options will result in an induced emf in the loop.
Explanation:
The induced emf in a conductor is directly proportional to the rate of change of flux.

where;
A is the area of the loop
B is the strength of the magnetic field
θ is the angle between the loop and the magnetic field
<em>Considering option </em><em>A</em>, moving the loop outside the magnetic field will change the strength of the magnetic field and consequently result in an induced emf.
<em>Considering option </em><em>B</em>, a change in diameter of the loop, will cause a change in the magnetic flux and in turn result in an induced emf.
Option C has a similar effect with option A, thus both will result in an induced emf.
Finally, <em>considering option</em> D, spinning the loop such that its axis does not consistently line up with the magnetic field direction will<em> </em>change the angle<em> </em>between the loop and the magnetic field. This effect will also result in an induced emf.
Therefore, all the given options will result in an induced emf in the loop.
Answer:
180° C
Explanation:
First we start by finding the area of the stopper.
A = πd²/4, where d = 1.5 cm = 0.015 m
A = 3.142 * 0.015² * ¼
A = 1.767*10^-4 m²
Next we find the force on the stopper
F = (P - P•)A, where
F = 10 N
P = pressure inside the tube,
P• = 1 atm
10 = (P - 101325) * 1.767*10^-4
P - 101325 = 10/1.767*10^-4
P - 101325 = 56593
P = 56593 + 101325
P = 157918 Pascal
Now, remember, in an ideal gas,
P1V1/T1 = P2V2/T2, where V is constant, then we have
P1/T1 = P2/T2, and when we substitute the values, we have
101325/(273 + 18) = 157918/ T2
101325/291 = 157918/ T2
T2 = (157918 * 291)/101325
T2 = 453 K
T2 = 453 - 273 = 180° C
Answer:
10.01 cm
Explanation:
Given that,
The time delay between transmission and the arrival of the reflected wave of a signal using ultrasound traveling through a piece of fat tissue was 0.13 ms.
The average propagation speed for sound in body tissue is 1540 m/s.
We need to find the depth when the reflection occur. We know that, the distance is double when transmitting and arriving. So,

or
d = 10.01 cm
So, the reflection will occur at 10.01 cm.
Answer:
I'm not 100% sure, but I think the answer would be the first one because there's a force pushing the object in every direction, so they would cancel eachother out and make the object stay in the same place.
Explanation:
pls vote brainliest