The formula for kinetic energy = ½m·v<span>2
1/2 * 55 kg x 5,87 m/s ^2 = 27.5 x </span>34.4569 = <span>947.56475 Joule </span>≈ 948 J
Answer:
If x₁=12 cm then k=1.7985 N/m
If x₂=15 cm then k=1.4388 N/m
Explanation:
Hanging mass= 22 g=0.022 kg
Acceleration due to gravity g=9.81 m/s²
If x₁=displacement= 12 cm=0.12 m
k= spring constant
∴k = 1.7985 N/m
If x₂=15 cm=0.15 m
Force of the hanging mass is same however the spring constant will change
∴k = 1.4388 N/m
As the mass is not changing the spring constant has to change. That means that here there are two spring one with k=1.7985 N/m and the other with k= 1.4388 N/m
Explanation:
In total, the length is measured from the tip of the bow in a linear fashion to the stern of the formation of delight including any back-deck extensions. The measurement involves bow sprits; rudders; detachable engines and engine sections; handles; and various fittings and connections.
Importance in calculating a boat's length:
it affects the transportation costs (the longer the length, the higher the cost).
The pontoon's length counts as you find out how much rope you need to wrestle.
The cost of vessel settlement on marinas depends in part on the pontoon length. As more area is consumed by a more drawn pontoon, the docking charges are higher.
Transportation guidelines will probably not allow pontoons past a specific length on specific occasions of the day.
Answer:
1.7323
Explanation:
To develop this problem, it is necessary to apply the concepts related to refractive indices and Snell's law.
From the data given we have to:
Where n means the index of refraction.
We need to calculate the index of refraction of the liquid, then applying Snell's law we have:
Replacing the values we have:
Therefore the refractive index for the liquid is 1.7323
Answer:
c. gravitational attraction between the sun and earth